Time-like surfaces with zero mean curvature vector in 4-dimensional neutral space forms

Author:

Ando NaoyaORCID

Abstract

Let M be a Lorentz surface and F:M→N a time-like and conformal immersion of M into a 4-dimensional neutral space form N with zero mean curvature vector. We show that the curvature K of the induced metric on M by F is identically equal to the constant sectional curvature L0 of N if and only if the covariant derivatives of both of the time-like twistor lifts are zero or light-like. If K≡L0, then the normal connection ∇⟂ of F is flat, while the converse is not necessarily true. We also prove that a holomorphic paracomplex quartic differential Q on M defined by F is zero or null if and only if the covariant derivative of at least one of the time-like twistor lifts is zero or light-like. In addition, we get that K is identically equal to L0 if and only if not only ∇⟂ is flat but also Q is zero or null

Publisher

Odesa National University of Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3