Abstract
We study properties of the set of subsums for convergent series k1 sin x + ... + km sin x + ... + k1 sin x[(n-1)/m+1] + ... + km sin x[(n-1)/m+1] + ... where k1, k2, k3, ..., km are fixed positive integers and 0<x<1. It is proved that depending on the parameter x this set can be a finite union of closed intervals or Cantor-type set or even Cantorval.
Publisher
Odesa National University of Technology
Subject
Applied Mathematics,Geometry and Topology,Analysis
Reference16 articles.
1. [1] Taras Banakh, Artur Bartoszewicz, Małgorzata Filipczak, and Emilia Szymonik. Topological and measure properties of some self-similar sets. Topol. Methods Nonlinear
2. Anal., 46(2):1013-1028, 2015. doi:10.12775/TMNA.2015.075.
3. [2] Artur Bartoszewicz, Mał gorzata Filipczak, and Emilia Szymonik. Multigeometric sequences and Cantorvals. Cent. Eur. J. Math., 12(7):1000-1007, 2014.
4. doi:10.2478/s11533-013-0396-4.
5. [3] Wojciech Bielas, Szymon Plewik, and Marta Walczyńska. On the center of distances. Eur. J. Math., 4(2):687-698, 2018. doi:10.1007/s40879-017-0199-4.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献