Dynamics and exact solutions of the generalized Harry Dym equation

Author:

Matviichuk Ruslan

Abstract

The Harry Dym equation is the third-order evolutionary partial differential equation. It describes a system in which dispersion and nonlinearity are coupled together. It is a completely integrable nonlinear evolution equation that may be solved by means of the inverse scattering transform. It has an infinite number of conservation laws and does not have the Painleve property. The Harry Dym equation has strong links to the Korteweg – de Vries equation and it also has many properties of soliton solutions. A connection was established between this equation and the hierarchies of the Kadomtsev – Petviashvili equation. The Harry Dym equation has applications in acoustics: with its help, finite-gap densities of the acoustic operator are constructed. The paper considers a generalization of the Harry Dym equation, for the study of which the methods of the theory of finite-dimensional dynamics are applied. The theory of finite-dimensional dynamics is a natural development of the theory of dynamical systems. Dynamics make it possible to find families that depends on a finite number of parameters among all solutions of evolutionary differential equations. In our case, this approach allows us to obtain some classes of exact solutions of the generalized equation, and also indicates a method for numerically constructing solutions.

Publisher

Odessa National Academy of Food Technologies

Subject

Applied Mathematics,Geometry and Topology,Analysis

Reference12 articles.

1. 1. Akhmetzyanov A. V., Kushner A. G., Lychagin V. V., Attractors in Models of Porous Media Flow, Doklady. Mathematics 472:6 (2017), 627-630.

2. 2. Duzhin S. V., Lychagin V. V., Symmetries of distributions and quadrature of ordinary differential equations, Acta Appl. Math. 24 (1991), 29-57.

3. 3. Gesztesy F., Unterkofler K., Isospectral deformations for Sturm - Liouville and Dirac-type operators and associated nonlinear evolution equations, Rep. Math. Phys. 31 (1992), 113-137.

4. 4. Kruglikov B. S., Lychagina O. V., Finite dimensional dynamics for Kolmogorov - Petrovsky - Piskunov equation, Lobachevskii Journal of Mathematics 19 (2005), 13-28.

5. 5. Krasilshchik I. S., Lychagin V. V., Vinogradov A. M., Geometry of jet spaces and nonlinear partial differential equations, New York: Gordon and Breach, 1986.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3