Geodesic mappings of compact quasi-Einstein spaces, II

Author:

Kiosak V.ORCID,Savchenko A.ORCID,Latysh O.ORCID

Abstract

The paper treats geodesic mappings of quasi-Einstein spaces with gradient defining vector. Previously the authors defined three types of these spaces. In the present paper it is proved that there are no quasi-Einstein spaces of special type. It is demonstrated that quasi-Einstein spaces of main type are closed with respect to geodesic mappings. The spaces of particular type are proved to be geodesic $D$-symmetric spaces.  

Publisher

Odessa National Academy of Food Technologies

Subject

Applied Mathematics,Geometry and Topology,Analysis

Reference28 articles.

1. [1] L. E. Evtushik, V. A. Kiosak, Ĭ. Mikesh. On the mobility of Riemannian spaces with respect to conformal mappings onto Einstein spaces. Izv. Vyssh. Uchebn. Zaved. Mat.,

2. (8):36-41, 2010, doi: 10.3103/S1066369X10080049.

3. [2] I. Hinterleitner, V. Kiosak. φ(Ric)-vector fields on conformally flat spaces. Proceedings of American Institute of Physics, 1191:98-103, 2009, doi: 10.1063/1.3275604.

4. [3] V. Kiosak, A. Savchenko, O. Gudyreva. On the conformal mappings of special quasi-Einstein spaces. In AIP Conference Procedings, volume 2164, 2019, doi: 10.1063/1.5130793.

5. [4] V. Kiosak, A. Savchenko, A. Kamienieva. Geodesic mappings of compact quasi-Einstein spaces with constant scalar curvature. In AIP Conference Procedings, volume 2302,

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conformal recurrent Kӓhler spaces;Proceedings of the International Geometry Center;2024-01-28

2. On geodesic mappings of threesymmetric spaces;Proceedings of the International Geometry Center;2024-01-19

3. Fundamental theorems of quasi-geodesic mappings of generalized-recurrent-parabolic spaces;Proceedings of the International Geometry Center;2023-11-12

4. On geodesic mappings of symmetric pairs;Proceedings of the International Geometry Center;2023-03-04

5. Geodesic Ricci-symmetric pseudo-Riemannian spaces;Proceedings of the International Geometry Center;2022-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3