Abstract
The paper treats geodesic mappings of quasi-Einstein spaces with gradient defining vector.
Previously the authors defined three types of these spaces.
In the present paper it is proved that there are no quasi-Einstein spaces of special type.
It is demonstrated that quasi-Einstein spaces of main type are closed with respect to geodesic mappings.
The spaces of particular type are proved to be geodesic $D$-symmetric spaces.
Publisher
Odessa National Academy of Food Technologies
Subject
Applied Mathematics,Geometry and Topology,Analysis
Reference28 articles.
1. [1] L. E. Evtushik, V. A. Kiosak, Ĭ. Mikesh. On the mobility of Riemannian spaces with respect to conformal mappings onto Einstein spaces. Izv. Vyssh. Uchebn. Zaved. Mat.,
2. (8):36-41, 2010, doi: 10.3103/S1066369X10080049.
3. [2] I. Hinterleitner, V. Kiosak. φ(Ric)-vector fields on conformally flat spaces. Proceedings of American Institute of Physics, 1191:98-103, 2009, doi: 10.1063/1.3275604.
4. [3] V. Kiosak, A. Savchenko, O. Gudyreva. On the conformal mappings of special quasi-Einstein spaces. In AIP Conference Procedings, volume 2164, 2019, doi: 10.1063/1.5130793.
5. [4] V. Kiosak, A. Savchenko, A. Kamienieva. Geodesic mappings of compact quasi-Einstein spaces with constant scalar curvature. In AIP Conference Procedings, volume 2302,
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Conformal recurrent Kӓhler spaces;Proceedings of the International Geometry Center;2024-01-28
2. On geodesic mappings of threesymmetric spaces;Proceedings of the International Geometry Center;2024-01-19
3. Fundamental theorems of quasi-geodesic mappings of generalized-recurrent-parabolic spaces;Proceedings of the International Geometry Center;2023-11-12
4. On geodesic mappings of symmetric pairs;Proceedings of the International Geometry Center;2023-03-04
5. Geodesic Ricci-symmetric pseudo-Riemannian spaces;Proceedings of the International Geometry Center;2022-09-30