Abstract
In an attempt to develop higher-dimensional quasiconformal mappings on metric measure spaces with curvature conditions, i.e. from Ahlfors to Alexandrov, we show that for n≥2 a noncollapsed RCD(0,n) space with Euclidean volume growth is an n-Loewner space and satisfies the infinitesimal-to-global principle.
Publisher
Odesa National University of Technology
Subject
Applied Mathematics,Geometry and Topology,Analysis
Reference72 articles.
1. [1] L. V. Ahlfors. An extension of Schwarz's lemma. Trans. Amer. Math. Soc., 43(3):359-364, 1938. doi:10.2307/1990065.
2. [2] L. V. Ahlfors. Lectures on quasiconformal mappings, volume 38 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. doi:10.1090/ulect/038.
3. [3] V. Alberge and A. Papadopoulos. A commentary on Lavrentieff's paper "Sur une classe de représentations continues". In Handbook of Teichmüller theory. Vol. VII, volume 30 of IRMA Lect. Math. Theor. Phys., pages 441-451. Eur. Math. Soc., Zürich, 2020.
4. [4] V. Alberge and A. Papadopoulos. On five papers by Herbert Grötzsch. In Handbook of Teichmüller theory. Vol. VII, volume 30 of IRMA Lect. Math. Theor. Phys., pages
5. 393-415. Eur. Math. Soc., Zürich, 2020.