Abstract
We study the asymptotic behavior at infinity of ring Q-homeomorphisms with respect to p-modulus for p>n
Publisher
Odesa National University of Technology
Subject
Applied Mathematics,Geometry and Topology,Analysis
Reference40 articles.
1. [1] L. V. Ahlfors. Lectures on quasiconformal mappings, volume 38 of University Lecture Series. American Mathematical Society, Providence, RI, second edition, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. doi:10.1090/ulect/038.
2. [2] C. J. Bishop, V. Gutlyanskii, O. Martio, and M. Vuorinen. On conformal dilatation in space. Int. J. Math. Math. Sci., (22):1397-1420, 2003. doi:10.1155/S0161171203110034.
3. [3] H. Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York, Inc., New York, 1969.
4. [4] F. W. Gehring. Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., 103:353-393, 1962. doi:10.2307/1993834.
5. [5] F. W. Gehring. Lipschitz mappings and the p-capacity of rings in n-space. In Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献