Задачі зв’язності для узагальнених гіпергеометричних многочленів Аппеля

Author:

Luno NataliiaORCID

Abstract

В статті використано загальний підхід до розв’язування задач зв’язності для многочленів Аппеля, який базується на тому, що відношення трансферних функцій, які представляють собою формальні степеневі ряди, даних двох сімейств многочленів Аппеля є відомим рядом. Використовуючи рекурентні формули для знаходження коефіцієнтів ряду, який є відношенням двох даних формальних степеневих рядів, ми отримали розв’язок оберненої задачі для узагальнених гіпергеометричних многочленів Аппеля.  В загальному випадку розв’язок визначається рекурентними формулами, але у деяких часткових випадках, коли породжуюча функція має простий вигляд, розв’язок оберненої задачі виражається у замкнутій формі, зокрема, для многочленів Гоулда-Хоппера, або для узагальнених гіпергеометричних многочленів Аппеля, породжуюча функція яких співпадає із функцією Бесселя першого роду. Користуючись цим же методом і відомим представленням узагальнених гіпергеометричних многочленів Аппеля у формі звичайного диференціального оператора, ми знайшли рекурентні формули розв'язку задачі зв'язності між узагальненими гіпергеометричними многочленами Аппеля та многочленами Бернуллі, між узагальненими гіпергеометричними многочленами Аппеля - многочленами Гоулд-Хоппера та між двома різними сімействами узагальнених гіпергеометричних многочленів Аппеля. Використовуючи схожий підхід, ми отримали нове рекурентне рівняння для  узагальнених гіпергеометричних многочленів Аппеля, коефіцієнти якого визначаються рекурентно, і встановили замкнуту форму декількох перших з них. Частковими випадками отриманого рівняння є, зокрема, відомі рекурентні рівняння для многочленів Гоулда-Хоппера і для многочленів Ерміта. Крім того, розв'язок задачі зв'язності для двох різних сімейств узагальнених гіпергеометричних многочленів Аппеля отримано в іншій формі - з використанням значень цих многочленів в нулі.

Publisher

Odessa National Academy of Food Technologies

Subject

Applied Mathematics,Geometry and Topology,Analysis

Reference25 articles.

1. [1] Handbook of mathematical functions with formulas, graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by

2. the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964.

3. [2] The On-Line Encyclopedia of Integer Sequences, 2020. http://oeis.org/A000275.

4. [3] P. Appell. Sur une classe de polynômes. Ann. Sci. École Norm. Sup. (2), 9:119-144, 1880, http://www.numdam.org/item?id=ASENS_1880_2_9__119_0.

5. [4] L. Bedratyuk. Semi-invariants of binary forms and identities for Bernoulli, Euler and Hermite polynomials. Acta Arith., 151(4):361-376, 2012, doi: 10.4064/aa151-4-2.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3