Classification of curves on de Sitter plane

Author:

Streltsova Irina

Abstract

In 1917, de Sitter used the modified Einstein equation and proposed a model of the Universe without physical matter, but with a cosmological constant. De Sitter geometry, as well as Minkowski geometry, is maximally symmetrical. However, de Sitter geometry is better suited to describe gravitational fields. It is believed that the real Universe was described by the de Sitter model in the very early stages of expansion (inflationary model of the Universe). This article is devoted to the problem of classification of regular curves on the de Sitter space. As a model of the de Sitter plane, the upper half-plane on which the metric is given is chosen. For this purpose, an algebra of differential invariants of curves with respect to the motions of the de Sitter plane is constructed. As it turned out, this algebra is generated by one second-order differential invariant (we call it by de Sitter curvature) and two invariant differentiations. Thus, when passing to the next jets, the dimension of the algebra of differential invariants increases by one. The concept of regular curves is introduced. Namely, a curve is called regular if the restriction of de Sitter curvature to it can be considered as parameterization of the curve. A theorem on the equivalence of regular curves with respect to the motions of the de Sitter plane is proved. The singular orbits of the group of proper motions are described.

Publisher

Odessa National Academy of Food Technologies

Subject

Applied Mathematics,Geometry and Topology,Analysis

Reference11 articles.

1. [1] D. V. Alekseevskij, A. M. Vinogradov, V. V. Lychagin. Basic ideas and concepts of differential geometry, volume 28 of Encyclopaedia Math. Sci. Springer, Berlin, 1991.

2. [2] W. de Sitter. On the curvature of space. In Proceedings of the Royal Netherlands Academy of Arts and Science, volume 20, page 229, 1917.

3. [3] W. de Sitter. On the relativity of inertia: Remark concerning Einstein's latest hypothesis. In Proceedings of the Royal Netherlands Academy of Arts and Science, volume 19,

4. pages 1217-1225, 1917.

5. [4] Alexei Kushner, Valentin Lychagin, Vladimir Rubtsov. Contact geometry and non-linear differential equations, volume 101 of Encyclopedia of Mathematics and its Applications.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3