Frame-based System for Diagnosing Infertility in Males and Females

Author:

Mukhtar Shitu Umar,Muhammad Sanda Abdulkadir

Abstract

Diagnosis plays a crucial role in saving the life of a patient. However, due to the challenges faced by medical practitioners such as; few available resources, little amount of time dedicated to diagnose each patient, few numbers of specialists, emergence of new diseases and similarities of symptoms of diseases may hinder achieving accurate diagnosis. Infertility may be caused by a range of medical condition and abnormalities such as diseases, infections and hormonal imbalances in the reproductive system. The prevalence of infertility has negatively affected many couples globally especially in Africa where it is often linked with different traditional superstition in some societies. This led to the need for the development of systems capable of predicting and diagnosing diseases. In this research work, the expert System developed employs the frame-based approach to assess and predict the possible infertility problem that a patient may have based on the symptoms and patient information provided into the system. Outcomes of diagnosis presented to users solely depend on reasoning method implemented in the knowledge base of the system. The system showed an excellent predictive ability of 98% when scoring based on accuracy. It was evaluated on fifty (50) randomly selected infertility cases from the case file of patients. The system was able to effectively predict forty nine (49) infertility cases correctly and one (1) incorrectly. From the study, it is concluded that the frame-based system will assist not only medical practitioners but also individuals affected in achieving timely diagnosis since it can be accessed remotely. Furthermore, the system has the ability to store health records, diagnosis and generate statistical reports of patients.    

Publisher

SABA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3