An Improved Index Price/Movement Prediction by using Ensemble CNN and DNN Deep Learning Technique

Author:

Sisodia Jitendra,Nayak Amar,Boghey Rajesh

Abstract

As it knows prediction is always a challenging task in all terms. The goal of any stock prediction method is to develop a robust method for predicting trading price that can be used to improve investment decisions and accurate models. The paper proposes a hybrid model that combines the strengths of deep learning models CNN and DNN, and to develop a comprehensive methodology for the prediction of stock/index prices on Banknifty (NSE Bank), a highly volatile Indian sectorial Index that represents 12 major banks of the country. The hybrid model consists of two main components a CNN for feature extraction and a DNN for regression or classification tasks. In the context of stock price prediction, CNN layers can be used to extract features from input data (such as stock prices and indicators) related to an estimated future value. DNN layer can be used to combine features learned from the CNN layers. Model performance will be evaluated using various metrics including Accuracy, Precision, Recall, Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R-squared. The method also analyses the impact of various factors on stock prices, including market volatility, economic indicators, and geopolitical events. The achieved accuracy of 97.48% indicates that the model was successful in accurately predicting the stock prices of Bank Nifty. The proposed method is expected to provide investors and financial analysts with a valuable tool for making informed investment decisions.

Publisher

SABA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling Taiwan Stock Market Dynamics: A Graph Neural Network Approach to Automatic Stock Clustering for Enhanced Predictions;2024 10th International Conference on Applied System Innovation (ICASI);2024-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3