Comparison of Predictive Performance of Data Mining Algorithms in Predicting Tomato Yield with the A Case Study in Igdir

Author:

Karadaş Köksal1ORCID,Bulut Osman Doğan1ORCID

Affiliation:

1. IĞDIR ÜNİVERSİTESİ, IĞDIR ZİRAAT FAKÜLTESİ

Abstract

Among the vegetable species in the world, the plant with the most cultivation area is tomato. Increasing tomato yield is important in terms of contributing more to the world economy, producer’s income and human health. With the advancement in software technologies, the importance of data mining algorithms is increasing due to the fact that these algorithms can produce more sophisticated solutions for regression and classification problems. Determining the factors affecting tomato yield and comparing different data mining algorithms on prediction of tomato yield are the purpose of this study. For this purpose, survey study was conducted with the 105 farmers, selected by Simple Random Sampling Method in Igdir province in 2016. Different data mining algorithms including Classification and Regression Tree, Exhaustive CHAID, Chi-Square Automatic Interaction Detector, Artificial Neural Network Algorithm, Multivariate Adaptive Regression Splines and General Linear Model were developed and compared their predictive performance. MARS decision tree has been able to build a model with greatest predictive accuracy, and the others are respectively ANN, GLM, CART, CHAID and Exhaustive CHAID. In the MARS model, number of irrigation , amount of chemical fertilizer , age of farmer , number of seedlings , education level , soil analysis status , sowing region were found statistically significant (P˂0.05). Preferring the MARS model could give an opportunity to detect factors affecting tomato yield and their interactions with higher accuracy. Moreover, results can be easily interpreted and the rules are understandable.

Publisher

KSU Journal of Agriculture and Nature

Reference43 articles.

1. Anonymous, (2018). Food and Agricultural Commodities Production Database. http://faostat.fao.org/site/339/default.aspx (Date accessed: 12.05.2021).

2. Anonymous, (2019). Crop Production Statistics. https://www.tuik.gov.tr/Home/Index (Date accessed: 12.02.2021).

3. Anonymous, (2020). Temperature Data for the Province of Igdir. https://tr.climate-data.org/asya/tuerkiye/igd%C4%B1r-693/ (Date accessed: 12.03.2021).

4. Aytekin, İ., Eyduran, E., Karadaş, K., Akşahan, R., & Keskin, İ. (2018). Prediction of fattening final live weight from some body measurements and fattening period in young bulls of crossbred and exotic breeds using MARS data mining algorithm. Revista Brasileira de Zootecnia 50(1), 189-195. http://doi.org/10.17582/journal.pjz/2018.50.1.189.195

5. Bostancı, B. & Eren-Atay, C. (2018). Decision support tools for barley yield: the case of Menemen – Turkey. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering 20(60), 1057-1067. https://doi.org/10.21205/deufmd.2018206085

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3