Affiliation:
1. IĞDIR ÜNİVERSİTESİ, IĞDIR ZİRAAT FAKÜLTESİ
Abstract
Among the vegetable species in the world, the plant with the most cultivation area is tomato. Increasing tomato yield is important in terms of contributing more to the world economy, producer’s income and human health. With the advancement in software technologies, the importance of data mining algorithms is increasing due to the fact that these algorithms can produce more sophisticated solutions for regression and classification problems. Determining the factors affecting tomato yield and comparing different data mining algorithms on prediction of tomato yield are the purpose of this study. For this purpose, survey study was conducted with the 105 farmers, selected by Simple Random Sampling Method in Igdir province in 2016. Different data mining algorithms including Classification and Regression Tree, Exhaustive CHAID, Chi-Square Automatic Interaction Detector, Artificial Neural Network Algorithm, Multivariate Adaptive Regression Splines and General Linear Model were developed and compared their predictive performance. MARS decision tree has been able to build a model with greatest predictive accuracy, and the others are respectively ANN, GLM, CART, CHAID and Exhaustive CHAID. In the MARS model, number of irrigation , amount of chemical fertilizer , age of farmer , number of seedlings , education level , soil analysis status , sowing region were found statistically significant (P˂0.05). Preferring the MARS model could give an opportunity to detect factors affecting tomato yield and their interactions with higher accuracy. Moreover, results can be easily interpreted and the rules are understandable.
Publisher
KSU Journal of Agriculture and Nature
Reference43 articles.
1. Anonymous, (2018). Food and Agricultural Commodities Production Database. http://faostat.fao.org/site/339/default.aspx (Date accessed: 12.05.2021).
2. Anonymous, (2019). Crop Production Statistics. https://www.tuik.gov.tr/Home/Index (Date accessed: 12.02.2021).
3. Anonymous, (2020). Temperature Data for the Province of Igdir. https://tr.climate-data.org/asya/tuerkiye/igd%C4%B1r-693/ (Date accessed: 12.03.2021).
4. Aytekin, İ., Eyduran, E., Karadaş, K., Akşahan, R., & Keskin, İ. (2018). Prediction of fattening final live weight from some body measurements and fattening period in young bulls of crossbred and exotic breeds using MARS data mining algorithm. Revista Brasileira de Zootecnia 50(1), 189-195. http://doi.org/10.17582/journal.pjz/2018.50.1.189.195
5. Bostancı, B. & Eren-Atay, C. (2018). Decision support tools for barley yield: the case of Menemen – Turkey. Dokuz Eylul University Faculty of Engineering Journal of Science and Engineering 20(60), 1057-1067. https://doi.org/10.21205/deufmd.2018206085