Board 72: Adaptive Affect-Aware Multimodal Learning Assessment System for Optimal Educational Interventions
Author:
Gomez Andres1, Silva Catia1
Publisher
ASEE Conferences
Reference22 articles.
1. W. Chango, J. A. Lara, R. Cerezo, and C. Romero, “A review on Data Fusion in multimodal learning analytics and educational data mining,” WIREs Data Mining and Knowledge Discovery, vol. 12, issue. 4, Apr. 2022. doi:10.1002/widm.1458. 2. M. Pourmirzaei, G. A. Montazer, E. Mousavi, “Customizing an Affective Tutoring System Based on Facial Expression and Head Pose Estimation”, arXiv [Preprint], Nov. 2021. Available: arXiv:2111.14262. (accessed Feb. 5, 2024). 3. M. S. Hussain, O. AlZoubi, R. A. Calvo, and S. K. D’Mello, “Affect detection from multichannel physiology during learning sessions with AutoTutor,” in International Conference on Artificial Intelligence in Education, AIED 2011, Auckland, New Zealand, June 28-July 1, 2011, G. Biswas, S. Bull, J. Kay, A. Mitrovic, Eds. Springer, Berlin, Heidelberg, 2011. pp. 131-138. doi:10.1007/978-3-642-21869-9_19. 4. N. Thompson and T. J. McGill, “Genetics with Jean: The design, development and evaluation of an affective tutoring system,” Educational Technology Research Dev, vol. 65, pp. 279–299, Aug. 2016. doi:10.1007/s11423-016-9470-5. 5. B. Nye, S. Karumbaiah, S.T. Tokel, M. G. Core, G. Stratou, D. Auerbach, and K. Georgila, “Analyzing learner affect in a scenario-based intelligent tutoring system,” in International Conference on Artificial Intelligence in Education, AIED 2017, Wuhan, China, June 28-July 1, 2017, E. André, R. Baker, X. Hu, M. Rodrigo, B. du Boulay, Eds. Springer, Cham, 2017. pp. 544-547. doi:10.1007/978-3-319-61425-0_60.
|
|