Klasifikasi Penyakit Daun Padi menggunakan Random Forest dan Color Histogram

Author:

Agustiani Sarifah, ,Tajul Arifin Yoseph,Junaidi Agus,Khotimatul Wildah Siti,Mustopa Ali, , , ,

Abstract

Indonesia is an agrarian country, which is a sector that plays an important role most of the Indonesian population makes agriculture the main focus, but the function of rice fields into housing or industry has resulted in a decrease in rice production, in addition to pests, diseases, unfavorable weather, Irrigation is not smooth resulting in less than the maximum yield. For this reason, it is necessary to have technology that can implement the process of detecting rice leaf disease in order to provide information to farmers about rice leaf damage. The most modern approach today can be done with machine learning or deep learning by using various algorithms to improve recognition and accuracy in the detection and diagnosis of plant diseases. Based on this, this study aims to propose a method of classifying rice leaf diseases in order to provide information to farmers about rice leaves which are expected to reduce the disease by detecting the disease early so as to increase rice production. In this study, the classification process is carried out using the augmented image, then the Color Histogram feature extraction method is applied, and the classification is carried out using the Random Forest algorithm. In addition, this study also conducted several comparisons, including feature extraction and yahoo to get the results, and the highest results reached 99.65% of the proposed method. Keywords: Color Histogram; Rice Leaf Disease; Random Forest.

Publisher

Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Lampung

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Empirical Study On Algorithm Optimization In Expert Systems For Diagnosing Rice Plant Diseases;INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi;2024-02-01

2. Mechatronic System for ESP32CAM OpenCV Rice Plant Pest Detection;2023 Eighth International Conference on Informatics and Computing (ICIC);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3