IDENTIFYING BEHAVIORAL PATTERNS IN MOOC VIDEO ENGAGEMENT USING CLUSTERING APPROACH

Author:

Er Erkan1ORCID,Akçapınar Gökhan2ORCID,Sökücü Gamze1ORCID

Affiliation:

1. ORTA DOĞU TEKNİK ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ, BİLGİSAYAR VE ÖĞRETİM TEKNOLOJİLERİ EĞİTİMİ BÖLÜMÜ

2. HACETTEPE ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ, BİLGİSAYAR VE ÖĞRETİM TEKNOLOJİLERİ EĞİTİMİ BÖLÜMÜ, BİLGİSAYAR VE ÖĞRETİM TEKNOLOJİLERİ EĞİTİMİ ANABİLİM DALI

Abstract

Videos are the core components of MOOCs for delivering course content and teaching the core concepts effectively. While the literature provided strong and consistent evidence regarding the link between video engagement and the success in MOOCs, the research on video engagement behavior is still emerging and in demand of further research. This research aims to contribute to the literature by identifying behavioral patterns of video engagement in a MOOC and reveal the association of these patterns with success and failure. In particular, we employed simple video engagement metrics with an attempt to identify clusters of behavioral patterns that can be applied to different contexts. Acknowledging that students may exhibit varied engagement behaviors across study sessions, a session-level clustering analysis was performed, differently from previous research. After applying K-Means clustering algorithm, three clusters of behavioral patterns were identified: static viewing (the most predominant behavior), in which students viewed videos with minimal interactions; engaged viewing, involving high frequency of play and pause events; and focused viewing (the least frequent pattern), which involved mainly seeking the video for specific information. While video sessions with static viewing were very common among both high and low achieving students, most engaged-viewing sessions or focused-viewing sessions consistently belonged to the successful students. In addition, successful students were found to demonstrate multiple viewing behaviors, suggesting their effort in using multiple strategies while watching videos. Based on the findings, the paper discusses implications for the design of MOOCs and other online learning platforms that support video-based learning.

Publisher

Education Technology Theory and Practice

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3