First-Principles Study of Titanium and Lithium Adsorption on Perfect and Defective Hexagonal Boron Nitride Monolayer Under Effects of Charging

Author:

SALMANKURT Bahadır1ORCID

Affiliation:

1. SAKARYA UNIVERSITY OF APPLIED SCIENCES

Abstract

Single Titanium (Ti) and Lithium (Li) atoms adsorption on Pristine and defective hexagonal boron nitride (P-h-BN and BV-h-BN) monolayer were employed using Density Functional Theory (DFT) under effect of charging. Obtained data reveal that Li adsorption on P-h-BN is weak, while Ti adsorption on P-h-BN is strong. When Ti and Li atoms interact with P-h-BN surface, Ti and Li generate 4 µB/cell and 1 µB/cell magnetic moments, respectively. The extraction of an electron from the systems leads to a considerable rise in the adsorption energy, notably in the case of Li-P-h-BN. There is a notable decrease in the band gap of Ti-P-h-BN in both the charged states, especially in the electron-added state. Removing an electron from the Li-P-h-BN system results in a non-magnetic state and a significant increase of the band gap to 4.07 eV. Ti-BV-h-BN system shows significantly stronger adsorption energy due to the d-orbitals of the Ti atom. When an electron is added to the systems, the interaction energy between Ti and BV-h-BN decreases, while the interaction energy between Li and BV-h-BN increases. Moreover, removing an electron from Ti-BN-h-BN increases the band gap to 2.29 eV and the disappearance of the magnetic moment.

Publisher

Kocaeli Journal of Science and Engineering

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3