A Low-Dimensional Feature Vector Representation for Gait-based Parkinson’s Disease Detection

Author:

ÖLMEZ Emin1ORCID,AKBULUT Orhan1ORCID,SERTBAŞ Ahmet2ORCID

Affiliation:

1. Kocaeli Üniversitesi

2. İstanbul Üniversitesi - Cerrahpaşa

Abstract

Thanks to the developing technology, Parkinson's disease can be detected by using datasets which are obtained from different sources. Gait activity analysis is one of the methods used to detect Parkinson’s disease. The gait activity of Parkinson's disease differs from the gait of a normal person. In this study, a support vector machine-based classification method using low-dimensional feature vector representation is proposed to detect Parkinson's disease. Pressure sensors placed under the foot are divided into 3 categories, placed on the heel of the foot, the center of the foot, and the toe. Average stance duration, average stride duration, and average distance are extracted from the heel of the foot and toe. The frequency value obtained from the center of the foot during the walking period is used. Only 4 feature values having O(n) time complexity are used for the classification process. Experimental results point out that the proposed method can compete with similar studies proposed in the literature, even under these few features. According to the experimental results, high classification performance, up to 85%, is obtained under the whole dataset. Moreover, superior classification performance, up to 91%, is obtained when the datasets are evaluated individually.

Publisher

Kocaeli Journal of Science and Engineering

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3