Recognition of Russian and Indian sign languages used by the deaf people

Author:

Elakkiya R.ORCID, ,Grif MikhailORCID,Prikhodko AlexeyORCID,Bakaev MaximORCID, , ,

Abstract

In our paper, we consider approaches towards the recognition of sign languages used by the deaf people in Russia and India. The structure of the recognition system for individual gestures is proposed based on the identification of its five components: configuration, orientation, localization, movement and non-manual markers. We overview the methods applied for the recognition of both individual gestures and continuous Indian and Russian sign languages. In particular we consider the problem of building corpuses of sign languages, as well as sets of training data (datasets). We note the similarity of certain individual gestures in Russian and Indian sign languages and specify the structure of the local dataset for static gestures of the Russian sign language. For the dataset, 927 video files with static one-handed gestures were collected and converted to JSON using the OpenPose library. After analyzing 21 points of the skeletal model of the right hand, the obtained reliability for the choice of points equal to 0.61, which was found insufficient. It is noted that the recognition of individual gestures and sign speech in general is complicated by the need for accurate tracking of various components of the gestures, which are performed quite quickly and are complicated by overlapping hands and faces. To solve this problem, we further propose an approach related to the development of a biosimilar neural network, which is to process visual information similarly to the human cerebral cortex: identification of lines, construction of edges, detection of movements, identification of geometric shapes, determination of the direction and speed of the objects movement. We are currently testing a biologically similar neural network proposed by A.V. Kugaevskikh on video files from the Russian sign language dataset.

Publisher

Novosibirsk State Technical University

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SignSpeak: Exploring the Sign Language Communication Using Deep Neural Networks;2023 International Conference on Modeling, Simulation & Intelligent Computing (MoSICom);2023-12-07

2. Recognition of Signs and Movement Epentheses in Russian Sign Language;Communications in Computer and Information Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3