Effect of deformation processing on microstructure and mechanical properties of Ti-42Nb-7Zr alloy

Author:

Eroshenko AnnaORCID, ,Legostaeva ElenaORCID,Glukhov IvanORCID,Uvarkin PavelORCID,Tolmachev AlexeyORCID,Luginin NikitaORCID,Bataev VladimirORCID,Ivanov IvanORCID,Sharkeev YuriiORCID, , , , , , , , , ,

Abstract

Introduction. The interest of modern medical materials science is focused on the development of beta-alloys of ternary systems (TNZ) based on titanium, niobium and zirconium with the low Young’s modulus, which is comparable with the elastic modulus of the bone. A wide application of the above alloys in medicine is limited by its insufficiently high strength properties, such as yield strength, ultimate strength, fatigue strength, fatigue life, etc. The formation of bulk ultrafine-grained structure in the alloys via deformation processing, including severe plastic deformation, ensures a considerable increase in the mechanical properties of alloys without toxic alloying elements. The aim of the work is to analyze the influence of deformation (multipass rolling and abc-pressing in combination with rolling) on the microstructure and mechanical properties of the alloy of the Ti-Nb-Zr system. The research methods. The Ti-42Nb-7Zr alloy cast blanks were made from pure titanium, niobium, and zirconium iodides by arc melting with a tungsten electrode in the protective argon atmosphere. It is shown that the cast blanks obtained have a high degree of uniformity in the distribution of niobium and zirconium alloying elements. To form an ultrafine-grained (UFG) structure, the cast blanks were subjected to deformation according to two schemes: 1) multipass rolling and 2) a combined method of severe plastic deformation, consisting in abc-pressing and subsequent multipass groove rolling. Results and discussion. As a result of deformation processing by rolling, an ultrafine-grained (UFG) structure is formed, which is represented by non-equiaxed -subgrains with cross-sectional dimensions 0.2…0.8 µm and length 0.2…0.7 µm, dispersion strengthened nanosized ω-phase, as well as subgrains of the -phase. Application of combined severe plastic deformation has promoted formation of a more dispersed UFG (+ω)-structure with an average size of structural elements equal to 0.3 μm. The UFG structure formed as a result of two-stage SPD has provided a high level of mechanical properties: yield strength – 480 MPa, ultimate strength – 1.100 MPa, microhardness – 2.800 MPa, with a low modulus of elasticity equal to 36 GPa.

Publisher

Novosibirsk State Technical University

Subject

Metals and Alloys,Mechanics of Materials,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3