In situ crystal lattice analysis of nitride single-component and multilayer ZrN/CrN coatings in the process of thermal cycling

Author:

Vorontsov AndreyORCID, ,Filippov AndreyORCID,Shamarin NikolayORCID,Moskvichev EvgenyORCID,Novitskaya OlgaORCID,Knyazhev EvgenyORCID,Denisova YuliaORCID,Leonov AndreyORCID,Denisov VladimirORCID, , , , , , , ,

Abstract

Introduction. Thermal expansion is an important thermal and physical characteristic of materials, showing its expansion when heated. Knowing this property is important both from a scientific point of view and for practical applications. Materials with low thermal expansion are widely used in electronics, thermal barrier coatings and other applications. Mismatch in thermal expansion between different materials can lead to thermal stress on contact surfaces. The in-situ synchrotron X-ray diffraction method can detect this mismatch. Thermal stress requires an analysis of the coefficient of thermal expansion. Bulk expansion behavior is observed in thermally sprayed coatings. The CTE is important for designing and predicting coating performance under thermal stresses. Changes in the KTE can cause cracking and degradation of the coating. In-situ X-ray diffraction analysis helps to understand thermal expansion, crystallite size and stress and strain variation with temperature change. The aim of this work is to interpret and use in-situ high temperature X-ray diffraction as an effective tool to study the thermal mismatch behavior of a W-Co alloy substrate (8 % w/w Co, WC — matrix) with CrN, ZrN and CrZrN multilayer coatings and the characteristic differences between single component coatings and its combination in a multilayer coating. Research Methodology. In this work, specimens of chromium and zirconium nitride coatings deposited on W-Co hard alloy substrates were investigated. The fundamental method in this work is in-situ analysis using synchrotron radiation. The lattice parameter as a function of cycling temperature, the coefficient of thermal expansion during heating and cooling, and the thermal expansion mismatch between the substrate-coating pair and the coating layers in the multilayer coating were evaluated. Results and discussion. The lattice parameters and thermal expansion of the coatings are investigated. The lattice parameter of all coatings decreased during thermal cycling, indicating nitrogen evaporation. The multilayer coating has the least change in the parameter, possibly due to diffusion barriers. Lattice distortions do not differ between single and multilayer coatings. All coatings exhibit thermal expansion similar to the substrate. The multilayer coating creates conditions for compressive stresses in one phase and tensile stresses in the other phase, so the lifetime of multilayer coatings is expected to be high.

Publisher

Novosibirsk State Technical University

Subject

Metals and Alloys,Mechanics of Materials,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3