Evaluation of the bars’ multichannel angular pressing scheme and its potential application in practice

Author:

Loginov YuriyORCID, ,Zamaraeva YuliyaORCID, , ,

Abstract

Introduction. Deformation of low-plastic materials requires a high degree of compressive stress. This requirement is implemented, for example, in the process of equal channel angular pressing (ECAP). However, the products obtained by the ECAP method have a cross-section identical to the initial blank, which is one of the disadvantages of this method. The method of nonequal channel angular pressing (NECAP), in contrast to ECAP, makes it possible to change the shape of the initial blank towards closer to the shape of the finished product. However, the well-known NECAP device allows obtaining products only in the form of a thin strip of rectangular cross-section. Well-known devices for multichannel pressing of non-angular type also have a disadvantage — it is implemented only on horizontal type presses, where it is possible to receive long products on the workshop areas. The aim of the work is the evaluation of the bars’ multichannel angular pressing scheme, combining a change in the shape of the initial workpiece in cross-section, as well as the accumulation of a high level of strain during deformation. Research methods: finite element modeling using the DEFORM software module. Results and discussion. The paper considers the scheme of the angular pressing process with the use of a device that allows, for example, to obtain magnesium bars with a diameter of d = 4.1 mm with the number of matrix channels n = 3 from a blank of round cross-section. The container of this device in its lower part has a rectangular groove where the matrix is inserted. Modeling of the process under study using a matrix with the axes of its channels located in the plane of the orthogonal axis of the container and, in the first variant, along the axis of a rectangular groove, and in the second variant, along the radius of the container, allowed us to estimate the distribution of the average stress. It is established that the metal of the blank in both variants of the deformation process is affected by compression stresses at a high level (1,600 MPa). The assessment of the degree of deformation of the pressed bars allowed us to find out that at the initial stage of both process variants, the maximum strain degree can reach 2.6, and at the steady stage it reaches 5.0. It is established that in the case of the first variant of the matrix, the strain level along the length of the bars is lower than when using the second variant of the matrix. The difference reaches 20 %. By evaluating the distribution of the strain degree in the cross section of the pressed bars near the deformation site, it was found that in the case of the first variant of the matrix, the pressed bars of the first and third channels have an uneven dimensions, and the greater value of the strain degree is on the peripheral part of the rods from the side bordering the central bar. This difference in the strain degree reaches 20 %. When placing the second version of the matrix, this unevenness decreases to 12 %. Thus, in the case of using a matrix with the arrangement of the channel axes along the radius of the container, the strain degree is distributed more evenly compared to the strain degree when using a matrix with the arrangement of the channel axes along the axis of a rectangular groove.

Publisher

Novosibirsk State Technical University

Subject

Metals and Alloys,Mechanics of Materials,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3