Influence of high-energy impact during plasma cutting on structure and properties of surface layers of aluminum and titanium alloys

Author:

Rubtsov ValeryORCID, ,Panfilov AlexanderORCID,Knyazhev EvgenyORCID,Nikolaeva AlexandraORCID,Cheremnov AndreyORCID,Gusarova AnastasiaORCID,Beloborodov VladimirORCID,Chumaevskii AndreyORCID,Grinenko ArtemORCID,Kolubaev EvgenyORCID, , , , , , , , ,

Abstract

Introduction. Plasma cutting of various metals and alloys is one of the most productive processes for obtaining workpieces, especially when using reverse polarity plasmatrons. The use of plasma cutting in the production of workpieces of large thicknesses potentially allows to increase the productivity of the process. In the domestic industry plasma cutting equipment of foreign production is widely used, which poses the problem of import substitution of manufactured products and equipment with the corresponding parts of Russian companies. For this reason, at present the Institute of Strength Physics and Materials Science together with the company "ITS Siberia" develops plasma cutting equipment on reverse polarity currents. At the same time, in order to determine the peculiarities of influence of parameters and modes of plasma cutting process on the structure of metal in the cutting zone, it is necessary to conduct comparative studies on different metals and alloys. Aim of the work: is to identify the characteristics of the influence of high energy impact on the structure and properties of surface layers of aluminum and titanium alloys during plasma cutting using a plasma torch operating with reverse polarity currents. The research methods are optical metallography, microhardness measurement and laser scanning microscopy of the surface after plasma cutting. Results and discussions. The conducted researches show a wide range of possibilities to adjust the process parameters of plasma cutting of aluminum alloys AA5056 and AA2124, and titanium alloy Grade2. For the alloys used in this work there are optimal values of process parameters, deviations from which lead to various violations of cut quality. Aluminum alloys show a tendency to significant de-strengthening in the cutting zone, which is associated with the formation of a large crystalline structure and large incoherent secondary phases with simultaneous depletion of the solid solution with alloying elements. Titanium alloys are characterized by quenching effects in the cutting zone with increasing microhardness values. Oxides are also formed in the surface layers despite the use of nitrogen shielding gas. In the alloy Ti-4Al-1Mn, in the previously conducted works, the formation of oxide films with high hardness is not noted, while in the Grade2 alloy at cutting in the surface layers oxides are formed sharply increasing the values of microhardness of the material up to values of about 15 GPa. This situation can complicate mechanical processing of titanium alloys after plasma cutting. The obtained results indicate a rather low value of the allowance for further machining after plasma cutting of aluminum and titanium alloys.

Publisher

Novosibirsk State Technical University

Subject

Metals and Alloys,Mechanics of Materials,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3