The effect of laser surfacing modes on the geometrical characteristics of the single laser tracks

Author:

,Dolgova SvetlanaORCID,Malikov AlexandrORCID, ,Golyshev AlexanderORCID, ,Nikulina AelitaORCID,

Abstract

Introduction. Laser surfacing is one of the leading trends in the field of additive technologies, which consists in layer-by-layer build of material using a laser as an energy source. To obtain a high-quality product, it is necessary to select the optimal building parameters correctly. The problem is that such optimization is necessary for all equipment, since minor differences in its characteristics can make significant changes in the parameters of layer-by-layer build. In order to determine the optimal build mode, it is enough to analyze the effect of various equipment parameters on the characteristics of single tracks. Therefore, the purpose of this work is to determine the most important parameters of laser radiation that affect the surfacing process and the optimal mode for building a single track of chromium-nickel steel. The work investigated single tracks obtained by laser surfacing of powder from austenitic chromium-nickel steel AISI 316L. The optimization factors included such characteristics as laser power, beam speed, flow rate of supplied powder and laser spot size. The wavelength of laser radiation was 1.07 μm. Research methods. To determine the quality and geometric dimensions of single tracks, the macrostructure of cross sections of specimens was studied using metallography and scanning electron microscopy methods. Results and discussion. It is established that the optimal mode for growing single tracks of steel AISI 316L is characterized by a laser radiation power of 1,250 W and a scanning speed of 25 mm/s. In this case, the optimal powder consumption rate is 12 g/min, and the laser spot size is 4.1 mm. The work shows that the powder consumption and laser spot size have the greatest influence on the coefficient of effective use of powder material. By changing it, the surfacing performance can be increased by 10–15 %.

Publisher

Novosibirsk State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3