Technology of obtaining composite conglomerate powders for plasma spraying of high-temperature protective coatings

Author:

Guzanov BorisORCID, ,Pugacheva NataliaORCID,Slukin EvgeniyORCID,Bykova TatianaORCID, , ,

Abstract

Introduction. For parts of gas turbines operating under conditions of corrosion-erosion and intense wear, the most acceptable are compositions containing Ni, Co, Cr, Al, B, Y both in pure form and in the composition of compounds applied on the contact surface during thermal spraying. Modern integrated complexes obtained by combining dissimilar substances in the form of a single composition are promising. Such powders are obtained either by cladding or by conglomeration of finely dispersed starting components into a larger particle. The problem of developing and manufacturing plants for conglomeration of powders is urgent and practically important, since it makes it possible to obtain material for thermal spraying of coatings for high-temperature purposes. The aim of the work is to develop a technological scheme for obtaining powders of the required chemical composition with a given particle shape and size, intended for spraying high-temperature protective coatings. Materials and research methods. A technology is developed for the production of integrated powders for spraying coatings using the method of spray drying and subsequent sintering in vacuum or in an argon-hydrogen atmosphere, which avoids the loss of feedstock due to the return of fine and coarse fractions. A technology for preparing materials for spray drying and granulation is proposed. A gravity type aerodynamic classifier is designed and manufactured, which makes it possible to select automatically the powder fraction necessary for spraying the coating, as well as return the unwanted fraction for recycling. The morphology of the granular powder is determined using a TESCAN scanning electron microscope. The chemical composition of the resulting integrated complexes is determined by X-ray microanalysis on an OXFORD attachment. Results and discussion. The technological conditions for obtaining powders of a given size (40…100 µm) are established. It is shown that the shape of the conglomerate particles after spray drying is close to spherical. On the basis of a multifactor experiment, the optimization of the technological process for obtaining powders Ni-17Cr-10Al-1Y and Ni-22Cr-16Al-1Y with sizes up to 100 µm is performed. It is shown that when conglomerating powders with increased aluminum content (Ni-22Cr-16Al-1Y), it is necessary to take into account the exothermic reaction of nickel aluminide formation and dilute the mixture of initial components before sintering with the finished sintered powder. The resulting integrated complexes are characterized by high heat resistance; therefore they are designed and successfully used for plasma spraying of protective coatings for high-temperature purposes. Conclusions. A technology is developed for obtaining composite conglomerated powders Ni-17C-10Al-1Y and Ni-22Cr-16Al-1Y with particle sizes up to 100 µm and a shape close to spherical. A distinctive feature of this technology is that it avoids the loss of feedstock by returning fine and coarse fractions.

Publisher

Novosibirsk State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3