Structural and mechanical properties of stainless steel formed under conditions of layer-by-layer fusion of a wire by an electron beam

Author:

Fedorov VasiliyORCID, ,Rygin AleksandrORCID,Klimenov VasiliyORCID,Martyushev NikitaORCID,Klopotov AnatoliiORCID,Strelkova IrinaORCID,Matrenin SergeyORCID,Batranin AndreyORCID,Deryusheva ValentinaORCID, , , , , , , , ,

Abstract

Introduction. As of today, additive technologies are among the most promising methods to manufacture various parts. They allow producing parts of complex shapes and provide their quality structure. The quality of the structure formed depends on numerous parameters: equipment type, its operation mode, materials, shielding medium, etc. Large international companies producing 3D-printers provide technological guidelines for working on it. Such guidelines include the information on the manufacturers of raw materials (printing powders), products their equipment can work with and the operation modes that should be used with such powders. These parameters should be investigated to use it on the domestic equipment developed within the framework of research programs and import substitution programs. The researchers and developers of 3D-printing equipment frequently run into a problem of using currently available raw materials for obtaining parts possessing minimal porosity, uniform structure and mechanical properties similar to that of at least cast blanks. One of the widely used materials for 3D-printing is stainless steel. It has high corrosion resistance, which reduces the requirements to the medium in which 3D printing is carried out. Manufactured stainless steel products have a good combination of strength and plastic characteristics. The aim of the study is to obtain stainless steel specimens possessing minimal number of micro- and macro-defects and uniform structure by the method of wire arc additive manufacturing using an electron-beam setup developed at Tomsk Polytechnic University. The methods to study the AISI 308LSi stainless steel 3D-printed specimens are as follows: XRD analysis, tomography, chemical analysis, metallographic analysis, microhardness testing. Results and discussion. It is established that the AISI 308LSi stainless steel specimens manufactured using the electron-beam 3D-printing setup contain no macro-defects in the bulk of the specimens. There are small microdefects represented by residual gas pores with the dimensions of no more than 5.2 μm. The microstructure of the specimens is formed close to that of coarse-grained cast austenite steels and consists of columnar grains of the γ-Fe austenite matrix and high-temperature ferrite. The interfaces between the wire layers are not pronounced; however, there are small differences in phase composition. Based on the analysis of the results obtained, it is established that the use of electron-beam 3D-printing for the manufacture of parts from AISI 308LSi steel gives a structure similar to cast austenitic steels. Macro-defects do not appear, and the number of gas pores is small.

Publisher

Novosibirsk State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3