Improving the efficiency of metal-bonded diamond abrasive end tools by improving manufacturing technology

Author:

Smirnov ValentinORCID, ,Lobanov DmitryORCID,Skeeba VadimORCID,Golyushov IvanORCID, , ,

Abstract

Introduction. Difficult-to-machine materials with enhanced physical and mechanical properties are increasingly being used in various industries. Such materials are used in mechanical engineering for the manufacture of parts and assemblies of machines and mechanisms, in the production and processing of food products where increased operational requirements are required. In modern production, along with traditional methods of intensifying technological operations, combined and hybrid processing technologies are used. For the finishing of products, abrasive grinding with a diamond tool is used. One of the problems hindering the wide practical application of this method in industry is the fact that it has a high prime cost caused by the cost of materials used in the manufacture and the laboriousness of the tool shaping process. This leads to the need to develop a new technology for manufacturing diamond tools. The purpose of the work is to increase the efficiency of the end diamond abrasive tool with a metal bond by using carbon steels as a body material, increasing the strength of the connection between the body and the diamond-bearing part, as well as choosing an effective tool manufacturing technology. Research methodology. To gain this task, a technology for manufacturing end diamond abrasive tools is developed and tested. Allowing using the technology of capacitor welding to connect the diamond-bearing part with the shank and use medium-carbon hardened high-quality steels with a hardness of 45-60 HRC as the shank material. The strength of the connection of the body with the working diamond-bearing part of the grinding head samples is determined by tensile testing on a 1958U10 tensile machine with maximum load 100 kN. The quality of the joint is assessed visually by the presence of discontinuities in the joint, as well as by examining the microstructure and measuring the microhardness of the weld and heat-affected zones. The microhardness of the welded joint is measured using an HMV-G21ST semi-automatic microhardness tester (Shimadzu, Japan) at a load of 50 g. Results and discussion. Thus, the results of comparative studies allow us to assert that the strength of the connection between the shank and the working diamond-bearing part according to the proposed technology surpasses similar characteristics of the strength of the connection between the shank and the diamond-bearing layer of grinding heads obtained by the method selected by the prototype. Conclusions. The proposed technology for the manufacture of diamond heads increases the strength of the connection between the body and the diamond-bearing working part, reduces the cost of manufacturing the grinding heads due to the use of hardened medium-carbon steels as the material of the tool body instead of high-speed steel grades, the technology is simplified and the possibility of automating the manufacture of tools appears.

Publisher

Novosibirsk State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3