Invariant stress state parameters for forging upsetting of magnesium in the shell

Author:

Loginov YuriyORCID, ,Zamaraeva YuliyaORCID, , ,

Abstract

Introduction. For pressure treatment of low-plastic metals, it is necessary to develop special techniques for increasing plasticity. In the cold state, an increase in plastic properties is possible due to an increase in the level of compressive stresses during deformation. In the processes of forging precipitation, this is achieved by using shells or clips of various types. At the same time, the configuration of the precipitation tool also matters. To create additional compressive stresses and increase the ductility of the metal, the working surface of the tool can be configured differently than with a normal free draft, where it is obviously larger than the contact surface area of the workpiece, so that metal broadening can occur. The stress state has a great influence on the plasticity of the processed material. This state is described by methods of tensor representation, but to assess the situation, it is customary to use invariants of tensors in one form or another, which eliminates the influence of coordinates on the results of the analysis. In the sections of deformable body mechanics dealing with the influence of the stress state on plasticity, the first, but sometimes other invariants of the stress tensor are used, the invariants themselves are transformed into the stress state indicator and the lode coefficient. The aim of the work: mathematical evaluation of invariant parameters of the stress state of the magnesium precipitation process at room temperature, according to the results of which it is possible to obtain a positive result in real experiments. Research methods: finite element simulation using the DEFORM software module. Results and discussion. The theoretical justification of increasing the plasticity of the magnesium billet in the process of precipitation in the cage without its compression is carried out. An increase in the stress state index modulo 2...5 times is revealed, which contributes to an increase in the plasticity of the metal. At the same time, a zone with a lode coefficient close to zero is identified. It is adjacent to the middle of the height of the workpiece at the point of contact with the cage and can be a dangerous cross-section from the position of crack formation.

Publisher

Novosibirsk State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composite structure of the magnesium ball valve element for a drilling well;Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy;2023-04-14

2. Study of the plasticity of magnesium alloy MA2-1 based on torsion tests of cylindrical specimens;MATHEMATICS EDUCATION AND LEARNING;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3