Improving the efficiency of surface-thermal hardening of machine parts in conditions of combination of processing technologies, integrated on a single machine tool base

Author:

Skeeba VadimORCID, ,Ivancivsky VladimirORCID,

Abstract

Introduction. In the manufacturing industry, there is a particular interest in the development of a new type of technological equipment, which makes it possible to implement methods for modifying the parts surface layers by processing it with concentrated energy sources. The combination of two processing technologies (mechanical and surface-thermal operations) in the conditions of integrated equipment makes it possible to neutralize the disadvantages of monotechnologies and obtain new effects that are unattainable when using technologies separately. The use of hybrid machine tools in conjunction with the developed technological recommendations will allow achieving a multiple increase in the technical and economic efficiency of production, resource and energy saving, which in turn will contribute to an increase in the competitiveness of products and the renewal of the technological paradigm. Purpose of work: increasing productivity and reducing energy consumption during surface-thermal hardening of machine parts by exposure to concentrated energy sources under conditions of integrated processing. Theory and methods: studies of the possible structural composition and layout of hybrid equipment during the integration of mechanical and surface-thermal processes are carried out taking into account the main provisions of structural synthesis and the components of metalworking systems. Theoretical studies are carried out using the basic provisions of system analysis, geometric theory of surface formation, design of metalworking machines, finite-element method, mathematical and computer simulation. Mathematical simulation of thermal fields and structural-phase transformations in the case of HEH HFC is carried out in the ANSYS and SYSWELD software packages, using numerical methods for solving the differential equations of unsteady thermal conductivity (Fourier's equation), carbon diffusion (Fick's second law), and elastoplastic behavior of the material. The verification of the simulation results is carried out by conducting field experiments using: optical and scanning microscopy; mechanical and X-ray methods for determining residual stresses. In the study, Uone JD520 and Form Talysurf Series 2 profilograph-profilometers are used to simultaneously measure shape deviations, waviness and surface roughness. Surface topography is assessed using a Zygo New View 7300 laser profilograph-profilometer. The microhardness of the hardened surface layer of parts is evaluated on a Wolpert Group 402MVD device. Results and discussion. An original method of structural-kinematic analysis for pre-design research of hybrid metalworking equipment is presented. Methodological recommendations are developed for the modernization of metal-cutting machine tools, the implementation of which will allow the implementation of high-energy heating by high-frequency currents (HEH HFC) on a standard machine-tool system and ensure the formation of high-tech technological equipment with expanded functionality. A unified integral parameter of the temperature-time effect on a structural material is proposed when the modes of hardening by concentrated heating sources are assigned, which guarantee the required set of quality indicators of the surface layer of machine parts, while ensuring energy efficiency and processing productivity in general. It is experimentally confirmed that the introduction into production of the proposed hybrid machine tool in conjunction with the developed recommendations for the purpose of the HEH HFC modes in the conditions of integral processing of a “Plunger bushing” type part in relation to the factory technology allows increasing the productivity of surface hardening by 3.5 ... 4.1 times, and reduce energy consumption by 9.5 ... 11.3 times.

Publisher

Novosibirsk State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3