Experimental Study of the Defect Layer on Workpieces, grown by the DMD method

Author:

Ardashev DmitriiORCID, ,Dyuryagin AlexanderORCID,Galimov DamirORCID, ,

Abstract

Introduction. At this time, new methods of manufacturing workpieces are gaining great popularity, for example, additive technologies. Methods for growing workpieces by sintering a powder with a laser make it possible to manufacture parts of complex shapes that are impossible or rather difficult to obtain by traditional methods, such as casting, forging, etc. However, the details, obtained by means of additive technologies, in particular the DMD method (Direct Metal Deposition), do not correspond with the accuracy requirements. Consequently, such workpieces require further processing by turning, milling or grinding. To design an operation for machining parts, it is necessary to know the machining allowances, the magnitude of errors formed during the blank operation, so that after its removal the processed part meets the requirements of the drawing. The purpose of the work: experimental study of the size of the defect layer in the near-surface layers of generative workpieces made of Stellite 6 and CuAl10Fe4, grown by DMD method, using microstructural methods. In the work, using a microscope, a study is carried out, which consisted in the visual determination of the defective layer, which differs in structure; measuring its size; carrying out a chemical analysis; determining the nature of the change in microhardness. The research method is a microscopic examination of deposited materials Stellite 6 and CuAl10Fe4 (CuAl10Fe4). From the pictures taken with a microscope, it is possible to establish the linear size of the defect layer. Results and Discussion. Vortex formations are found in the melting zone, its chemical analysis is carried out and it is found that the concentration of chemical elements in these areas changes and includes both elements of the powder material and the substrate material. Measurement of microhardness showed that it decreases with depth from the surface of the deposited material to the substrate. Thus, the use of the technique presented in this paper for microscopic studies of the structure, chemical composition and microhardness of workpieces, grown by the DMD method will allow to predict the value of processing allowances in the future, during the designing of mechanical processing operation of generative workpieces.

Publisher

Novosibirsk State Technical University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3