Recognition of Russian and Indian Sign Languages Based on Machine Learning

Author:

Grif Mikhail G.ORCID, ,Elakkiya R.ORCID,Prikhodko Alexey L.ORCID,Bakaev Maxim А.ORCID,Rajalakshmi E.ORCID, , , ,

Abstract

In the paper, we consider recognition of sign languages (SL) with a particular focus on Russian and Indian SLs. The proposed recognition system includes five components: configuration, orientation, localization, movement and non-manual markers. The analysis uses methods of recognition of individual gestures and continuous sign speech for Indian and Russian sign languages (RSL). To recognize individual gestures, the RSL Dataset was developed, which includes more than 35,000 files for over 1000 signs. Each sign was performed with 5 repetitions and at least by 5 deaf native speakers of the Russian Sign Language from Siberia. To isolate epenthesis for continuous RSL, 312 sentences with 5 repetitions were selected and recorded on video. Five types of movements were distinguished, namely, "No gesture", "There is a gesture", "Initial movement", "Transitional movement", "Final movement". The markup of sentences for highlighting epenthesis was carried out on the Supervisely.ly platform. A recurrent network architecture (LSTM) was built, implemented using the TensorFlow Keras machine learning library. The accuracy of correct recognition of epenthesis was 95 %. The work on a similar dataset for the recognition of both individual gestures and continuous Indian sign language (ISL) is continuing. To recognize hand gestures, the mediapipe holistic library module was used. It contains a group of trained neural network algorithms that allow obtaining the coordinates of the key points of the body, palms and face of a person in the image. The accuracy of 85 % was achieved for the verification data. In the future, it is necessary to significantly increase the amount of labeled data. To recognize non-manual components, a number of rules have been developed for certain movements in the face. These rules include positions for the eyes, eyelids, mouth, tongue, and head tilt.

Publisher

Novosibirsk State Technical University

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sign Language Recognition Using Machine Learning;International Journal of Innovative Science and Research Technology (IJISRT);2024-05-13

2. Multi-Semantic Discriminative Feature Learning for Sign Gesture Recognition Using Hybrid Deep Neural Architecture;IEEE Access;2023

3. Slovo: Russian Sign Language Dataset;Lecture Notes in Computer Science;2023

4. Static and Dynamic Isolated Indian and Russian Sign Language Recognition with Spatial and Temporal Feature Detection Using Hybrid Neural Network;ACM Transactions on Asian and Low-Resource Language Information Processing;2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3