Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example

Author:

Zhdanov D.D.1,Ivin Yu.Yu.2,Shishparenok A.N.1,Kraevskiy S.V.1,Kanashenko S.L.1,Agafonova L.E.1,Shumyantseva V.V.3,Gnedenko O.V.1,Pinyaeva A.N.2,Kovpak A.A.1,Ishmukhametov A.A.4,Archakov A.I.3

Affiliation:

1. Institute of Biomedical Chemistry, Moscow, Russia

2. Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia

3. Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia

4. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia

Abstract

Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.

Publisher

Institute of Biochemistry

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference189 articles.

1. Hufsky F., Lamkiewicz K., Almeida A., Aouacheria A., Arighi C., Bateman A., Baumbach J., Beerenwinkel N., Brandt C., Cacciabue M., Chuguransky S., Drechsel O., Finn R.D., Fritz A., Fuchs S., Hattab G., Hauschild A.-C., Heider D., Hoffmann M., Hölzer M., Hoops S., Kaderali L., Kalvari I., von Kleist M., Kmiecinski R., Kühnert D., Lasso G., Libin P., List M., Löchel H.F., Martin M.J., Martin R., Matschinske J., McHardy A.C., Mendes P., Mistry J., Navratil V., Nawrocki E.P., O'Toole Á.N., Ontiveros-Palacios N., Petrov A.I., Rangel-Pineros G., Redaschi N., Reimering S., Reinert K., Reyes A., Richardson L., Robertson D.L., Sadegh S., Singer J.B., Theys K., Upton C., Welzel M., Williams L., Marz M. (2021) Computational strategies to combat COVID-19: Useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief. Bioinform., 22(2), 642-663.

2. Fougeroux C., Goksøyr L., Idorn M., Soroka V., Myeni S.K., Dagil R., Janitzek C.M., Sogaard M., Aves K.-L., Horsted E.W., Erdoğan S.M., Gustavsson T., Dorosz J., Clemmensen S., Fredsgaard L., Thrane S., Vidal-Calvo E.E., Khalifé P., Hulen T.M., Choudhary S., Theisen M., Singh S.K., Garcia-Senosiain A., van Oosten L., Pijlman G., Hierzberger B., Domeyer T., Nalewajek B.W., Strobøk A., Skrzypczak M., Andersson L.F., Buus S., Buus A.S., Christensen J.P., Dalebout T.J., Iversen K., Harritshoj L.H., Mordmuller B., Ullum H., Reinert L.S., de Jongh W.A., Kikkert M., Paludan S.R., Theander T.G., Nielsen M.A., Salanti A., Sander A.F. (2021) Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity. Nat. Commun., 12(1), 324.

3. Dong Y., Dai T., Wei Y., Zhang L., Zheng M., Zhou F. (2020) A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther., 5(1), 237.

4. Zhang B., Chao C.W., Tsybovsky Y., Abiona O.M., Hutchinson G.B., Moliva J.I., Olia A.S., Pegu A., Phung E., Stewart-Jones G.B.E., Verardi R., Wang L., Wang S., Werner A., Yang E.S., Yap C., Zhou T., Mascola J.R., Sullivan N.J., Graham B.S., Corbett K.S., Kwong P.D. (2020) A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Sci. Rep., 10(1), 18149.

5. Chen M., Zhang X.-E. (2021) Construction and applications of SARS-CoV-2 pseudoviruses: A mini review. Int. J. Biol. Sci., 17(6), 1574-1580.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3