Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example
-
Published:2023
Issue:5
Volume:69
Page:253-280
-
ISSN:2310-6905
-
Container-title:Biomeditsinskaya Khimiya
-
language:ru
-
Short-container-title:BIOMED KHIM
Author:
Zhdanov D.D.1, Ivin Yu.Yu.2, Shishparenok A.N.1, Kraevskiy S.V.1, Kanashenko S.L.1, Agafonova L.E.1, Shumyantseva V.V.3, Gnedenko O.V.1, Pinyaeva A.N.2, Kovpak A.A.1, Ishmukhametov A.A.4, Archakov A.I.3
Affiliation:
1. Institute of Biomedical Chemistry, Moscow, Russia 2. Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia 3. Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia 4. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Publisher
Institute of Biochemistry
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference189 articles.
1. Hufsky F., Lamkiewicz K., Almeida A., Aouacheria A., Arighi C., Bateman A., Baumbach J., Beerenwinkel N., Brandt C., Cacciabue M., Chuguransky S., Drechsel O., Finn R.D., Fritz A., Fuchs S., Hattab G., Hauschild A.-C., Heider D., Hoffmann M., Hölzer M., Hoops S., Kaderali L., Kalvari I., von Kleist M., Kmiecinski R., Kühnert D., Lasso G., Libin P., List M., Löchel H.F., Martin M.J., Martin R., Matschinske J., McHardy A.C., Mendes P., Mistry J., Navratil V., Nawrocki E.P., O'Toole Á.N., Ontiveros-Palacios N., Petrov A.I., Rangel-Pineros G., Redaschi N., Reimering S., Reinert K., Reyes A., Richardson L., Robertson D.L., Sadegh S., Singer J.B., Theys K., Upton C., Welzel M., Williams L., Marz M. (2021) Computational strategies to combat COVID-19: Useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief. Bioinform., 22(2), 642-663. 2. Fougeroux C., Goksøyr L., Idorn M., Soroka V., Myeni S.K., Dagil R., Janitzek C.M., Sogaard M., Aves K.-L., Horsted E.W., Erdoğan S.M., Gustavsson T., Dorosz J., Clemmensen S., Fredsgaard L., Thrane S., Vidal-Calvo E.E., Khalifé P., Hulen T.M., Choudhary S., Theisen M., Singh S.K., Garcia-Senosiain A., van Oosten L., Pijlman G., Hierzberger B., Domeyer T., Nalewajek B.W., Strobøk A., Skrzypczak M., Andersson L.F., Buus S., Buus A.S., Christensen J.P., Dalebout T.J., Iversen K., Harritshoj L.H., Mordmuller B., Ullum H., Reinert L.S., de Jongh W.A., Kikkert M., Paludan S.R., Theander T.G., Nielsen M.A., Salanti A., Sander A.F. (2021) Capsid-like particles decorated with the SARS-CoV-2 receptor-binding domain elicit strong virus neutralization activity. Nat. Commun., 12(1), 324. 3. Dong Y., Dai T., Wei Y., Zhang L., Zheng M., Zhou F. (2020) A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther., 5(1), 237. 4. Zhang B., Chao C.W., Tsybovsky Y., Abiona O.M., Hutchinson G.B., Moliva J.I., Olia A.S., Pegu A., Phung E., Stewart-Jones G.B.E., Verardi R., Wang L., Wang S., Werner A., Yang E.S., Yap C., Zhou T., Mascola J.R., Sullivan N.J., Graham B.S., Corbett K.S., Kwong P.D. (2020) A platform incorporating trimeric antigens into self-assembling nanoparticles reveals SARS-CoV-2-spike nanoparticles to elicit substantially higher neutralizing responses than spike alone. Sci. Rep., 10(1), 18149. 5. Chen M., Zhang X.-E. (2021) Construction and applications of SARS-CoV-2 pseudoviruses: A mini review. Int. J. Biol. Sci., 17(6), 1574-1580.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|