Genotoxic stress leads to the proinflammatory response of endothelial cells: an in vitro study

Author:

Sinitsky M.Y.1,Sinitskaya A.V.1,Shishkova D.K.1,Ponasenko A.V.1

Affiliation:

1. Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia

Abstract

It was shown, that genotoxic stress can trigger endothelial disfunction and atherosclerosis, but the molecular genetic mechanisms of this process are poorly investigated. At the same time, inflammation also plays the important role in atherogenesis. This study aimed access of inflammatory marker expression in the endothelial cells exposed to alkylating mutagen mitomycin C (MMC). Primary human coronary (HCAEC) and internal thoracic artery endothelial cells (HITAEC) exposed to 500 ng/ml MMC (experimental group) and 0.9% NaCl (control) were used in this research. A gene expression profile was evaluated by quantitative reverse transcription PCR after 6 h exposure of endothelial cells to MMC (or 0.9% NaCl) followed by subsequent 24 h incubation in the mutagen-free cell growth media. The cytokine profile of endotheliocytes was studied by dot blotting. We found that MIF, IL-8, MCP-1, IP-10 and PDGFB were upregulated both in HCAEC and HITAEC, while MIP-1β release remained unchanged. TIMP-2 was upregulated in HCAEC but not in HITAEC. sTNF RI was expressed only in HCAEC. According to gene expression analysis, HCAEC exposed to MMC are characterized by the increased mRNA level of IL-8, MCP-1 and IP-10; decreased expression of TIMP-2 and no differences in the expression of MIF, MIP-1β and PDGFB compared to the control. In HITAEC, increased mRNA level of IL-8 and IP-10; decreased expression of MIF and TIMP-2, no differences in the expression of MCP-1, MIP-1β and PDGFB was shown. TNF-RI expression was not detected in both cell lines. Thus, genotoxic stress in endothelial cells induced by MMC leads to differential inflammatory response that can trigger endothelial dysfunction.

Publisher

Institute of Biochemistry

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3