Abstract
A non-traditional method of thermal machining called wire electrical discharge machining (WEDM) is utilized for the production of intricate and complex components, particularly those composed of difficult-to-machine materials. Stainless steel has gained widespread usage in various applications in contemporary industry owing to its exceptional properties. In this present investigation, a numerical 3D finite element modeling simulation was conducted using the ABAQUS software to analyze the Material Removal Rates (MRR) for both single and multi-discharge scenarios of AISI 304 stainless steel. The findings indicate a close correspondence between the MRR values predicted by the numerical modeling and those obtained experimentally corresponding to the optimal process parameters: I = 6 A, Ton = 45 s, and Toff = 5 s. Hence, this numerical approach offers the potential to forecast outcomes before actual machining operations.
Publisher
Polish Academy of Sciences Chancellery