Interval Type 2 Fuzzy PI Enhanced State Space Model for Battery Management in Battery Electric Utility Vehicles Operating in Indoor Logistics Environment

Author:

Arun Kumar R.,Sankar Ganesh R.

Abstract

This research presents an advanced control approach for battery management in Battery Electric Utility Vehicles (BEUV) operating in indoor logistics environments. The proposed approach utilizes a combination of Proportional-Integral (PI), Fuzzy PI, and Interval Type 2 Fuzzy PI (IT2FuzzyPI) control structures to augment the state space model for battery management. The state space model incorporates the voltage and current of each battery cell as state variables and considers the current demand from the electric motor as an input. By integrating fuzzy logic with PI control and considering uncertainty, the IT2FuzzyPI structure offers improved control recital and system robustness in the occurrence of nonlinearities, uncertainties, and turbulences. The outcomes of the simulation validate the effectiveness of the proposed scheme in managing the battery pack system's state of charge and controlling the rates of charging and discharging. The IT2FuzzyPI control significantly improves the overall proficiency and longevity of the battery system, making it suitable for battery electric utility vehicles in logistics environments. This research contributes to the field of battery management systems, providing a valuable tool for designing and evaluating high-performance electric vehicles with enhanced control capabilities.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3