Automatic classification of underground utilities in Urban Areas: A novel method combining ground penetrating radar and image processing

Author:

Pasternak KlaudiaORCID,Fryskowska-Skibniewska AnnaORCID

Abstract

Precise determination of the location of underground utility networks is crucial in the field of civil engineering for: the planning and management of space with densely urbanized areas, infrastructure modernization, during construction and building renovations. In this way, damage to underground utilities can be avoided, damage risks to neighbouring buildings can be minimized, and human and material losses can be prevented. It is important to determine not only the location but also the type of underground utility network. Information about location and network types improves the process of land use design and supports the sustainable development of urban areas, especially in the context of construction works in build-up areas and areas planned for development. The authors were inspired to conduct research on this subject by the development of a methodology for classifying network types based on images obtained in a non-invasive way using a Leica DS2000 ground penetrating radar. The authors have proposed a new classification algorithm based on the geometrical properties of hyperboles that represent underground utility networks. Another aim of the research was to automate the classification process, which may support the user in selecting the type of network in images that are sometimes highly noise-laden. The developed algorithm shortens the time required for image interpretation and the selection of underground objects, which is particularly important for inexperienced operators. The classification results revealed that the average effectiveness of the classification of network types ranged from 42% to 70%, depending on the type of infrastructure.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3