Importance of sign conventions on analytical solutions to the wave-induced cyclic response of a poro-elastic seabed

Author:

Magda Waldemar1ORCID

Affiliation:

1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Geotechnical and Hydraulic Engineering, 11/12 Gabriela Narutowicza Street, 80-233 Gdansk, Poland

Abstract

This paper discusses the influence of different sign conventions for strains and stresses, i.e. the solid mechanics sign convention and the soil mechanics sign convention, on the form of governing partial differential equations (the static equilibrium equations and the continuity equation) used to describe the wave-induced cyclic response of a poro-elastic seabed due to propagation of a sinusoidal surface water-wave. Some selected analytical solutions, obtained by different authors and published in specialist literature in the form of complex functions describing the wave-induced pore-fluid pressure, effective normal stress and shear stress oscillations in the seabed, have been analysed and compared with each other mainly with respect to different sign conventions for stains and stresses and also with regard to different orientations of the positive vertical axis of the two-dimensional coordinate system and different directions of surface water-wave propagation. The performed analyses of the analytical solutions has indicated many inaccuracies, or even evident errors and exemplary mistakes of wrong-signed values of basic wave-induced response parameters (the shear stress in particular), thereby disqualifying these solutions and their final equations from practical engineering applications. Most of the mistakes found in the literature must be linked to authors’ lack of understanding and consistency in an uniform application of a certain sign convention for strains and stresses in the soil matrix at both stages of mathematical formulation of the governing problem and correct interpretation of equations of the final analytical solution. The present paper, based mostly on a thorough literature review, ought to draw attention and arouse interest among coastal scientists and engineers in proper identification and use of the existing analytical solutions to the wave-induced cyclic seabed response – solutions which differ very often in the applied sign convention for stresses in the soil matrix.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3