A grinding surface roughness class recognition combining red and green information

Author:

Huang Jiefeng12,Yi Huaian12,Fang Runji12,Song Kun12

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Automation Technology (Guilin University of Technology), Guilin, China, 541006

2. School of Mechanical and Control Engineering, Guilin University of Technology, Guilin, China, 541006

Abstract

The current machine vision-based surface roughness measurement mainly relies on the design of feature indicators associated with roughness to measure the surface roughness. However, the process is tedious and complicated. Moreover, most existing deep learning methods for workpiece surface roughness measurement use a monochromatic light source to acquire images. In the case of surface roughness in a grinding process with low roughness and random texture characteristics, the feature information obtained by monochromatic light source acquisition is relatively small. It is difficult to extract the workpiece surface roughness features, which can easily cause problems for subsequent measurement. Based on the problems above, this paper proposes a grinding surface roughness measurement method combining red-green information and a convolutional neural network. The technique uses a particular red-green block to highlight the grinding surface texture features. Finally, it classifies the grinding surface roughness measurement with a classification detection technique of the convolutional neural network. Experimental results show that the accuracy of the grinding surface roughness measurement method combining red-green information and the convolutional neural network is significantly improved compared with that of the grinding surface roughness measurement method without using the red-green data.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3