Effectiveness analysis of anti-galloping of spacer for catenary additional wires in strong wind section of high-speed railways

Author:

Zhang Youpeng1ORCID,Zhang Yahui1,Zhao Shanpeng1,Feng Qiang2,Yao Xiaotong1,Yang Ni1

Affiliation:

1. School of Automatic and Electrical Engineering, Lanzhou Jiaotong University China

2. State Grid Ningxia Electric Power Company China

Abstract

To effectively suppress the violent galloping of the catenary additional wires in the strong wind section of high-speed railways, the anti-galloping effectiveness and anti-galloping mechanism of the spacer installed on the catenary additional wires are studied. Firstly, the finite element model of the additional wires of the catenary before and after the installation of the spacer is established. Secondly, the random wind field at the additional wires is simulated by the harmonic synthesis method (WAWS). Finally, the galloping response of the additional wires before and after the installation of the spacer is studied by using the finite element software. The results show that the installation of a single spacer at the midpoint of the span can reduce the vertical amplitude of the AF (Additional Feeder) and the PW (Protection Wire) by more than 39.80% and 41.51%, respectively, and the lateral amplitude decreases by more than 16.55% and 38.30%, respectively. The tension of the AF is greatly reduced, while the tension of the PW is slightly increased, so that the galloping of the AF and the PW tends to be synchronized. With the increase in the number of spacers installed, the anti-galloping effect continues to increase. At the same time, the anti-galloping mechanism of the spacer rod to suppress the vibration of the additional wires through the traction effect is clarified, and the effectiveness of the spacer rod in the anti-galloping of the additional wires of the catenary is proved.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3