Electric vehicle motor fault diagnosis using improved wavelet packet decomposition and particle swarm optimization algorithm

Author:

Zheng Wenfang1,Wang Tieying1

Affiliation:

1. Xinxiang Vocational and Technical College, Xinxiang 453000, China

Abstract

This study addresses the issue of diagnosing faults in electric vehicle motors and presents a method utilizing Improved Wavelet Packet Decomposition (IWPD) combined with particle swarm optimization (PSO). Initially, the analysis focuses on common demagnetization faults, inter turn short circuit faults, and eccentricity faults of permanent magnet synchronous motors. The proposed approach involves the application of IWPD for extracting signal feature vectors, incorporating the energy spectrum scale, and extracting the feature vectors of the signal using the energy spectrum scale. Subsequently, a binary particle swarm optimization algorithm is employed to formulate strategies for updating particle velocity and position. Further optimization of the binary particle swarm algorithm using chaos theory and the simulated annealing algorithm results in the development of a motor fault diagnosis model based on the enhanced particle swarm optimization algorithm. The results demonstrate that the chaotic simulated annealing algorithm achieves the highest accuracy and recall rates, at 0.96 and 0.92, respectively. The model exhibits the highest fault accuracy rates on both the test and training sets, exceeding 98.2%, with a minimal loss function of 0.0035. Following extraction of fault signal feature vectors, the optimal fitness reaches 97.4%. In summary, the model constructed in this study demonstrates effective application in detecting faults in electric vehicle motors, holding significant implications for the advancement of the electric vehicle industry.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3