Design and optimization of a radial-axial hybrid excited machine with spoke-type permanent magnet rotor

Author:

Qiu Hongbo1,Gao Wenhao1,Duan Shuaishuai1

Affiliation:

1. Zhengzhou University of Light Industry China

Abstract

To further enhance the speed regulation range of the hybrid excited machine (HEM), the structure of a magnetic ring is optimized using a combination of the magnetic circuit method (MCM) and numerical analysis method in this paper, and a disc magnetic ring (DMR) is proposed. The magnetic density distribution of the proposed disc magnetic ring hybrid excited machine (DMRHEM) is compared to the radial-axial hybrid excited machine (RAHEM), and the superiority of alleviating a saturation problem in the proposed DMRHEM is determined. To improve the power density, the spoke-type permanent magnet (PM) rotor is applied. The influence of the proposed DMR on the HEM is analyzed, and the field adjustment capability of the proposed DMRHEM is better. Based on this, by combining the bypass principle, the analytical expressions for the relations between the rotor pole-pair number and the motor axial length/stator inner diameter (MAL/SID) as well as flux regulation capability are derived to further explore the superiority of the proposed DMRHEM. The influence mechanism of the rotor pole-pair number and the MAL/SID on the proposed DRMHEM is determined. The optimal MAL/SID and pole-pair number are obtained.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3