The impact of renewable energy sources on the overload of high voltage lines – power flow tracking versus direct current method

Author:

Pijarski Paweł1ORCID,Saigustia Candra1ORCID,Kacejko Piotr1ORCID,Bena Lubomir2,Belowski Adrian1ORCID

Affiliation:

1. Department of Power Engineering, Lublin University of Technology Nadbystrzycka 38A str., 20-618 Lublin, Poland

2. Department of Electric Power Engineering, Technical University of Kosice Letna 9 str., 042 00 Kosice, Slovakia

Abstract

Studying the impact of renewable energy sources planned to be connected to the grid, requires the preparation of expert opinions. The task of this opinion is to verify that there are possibilities enabling the connection of the considered source to the network. Each opinion is required to take into account other facilities and those sources which were previously connected to the grid or connection agreement were signed with them. The need to take into account such a large number of sources contributes to potential thermal overloads of high-voltage lines. Sometimes these overloads are insignificant, but in certain situations it turns out that their occurrence may be a reason for refusing to sign connection agreements for new sources. According to network operators, their presence may constitute a threat to the operational security of the grid. The article presents the use of the method of tracking active power flows and the DC method of determining power flows to estimate the impact of these sources on thermal overloading of lines. Using of the IEEE-118 test network, selected nodes were analysed where connecting sources might significantly worsen overloads previously observed or would cause new overloads. The proposed approach will enable potential investors to make proper decisions regarding selection of source connection points. Combining the results obtained by both methods at the same time will allow for the indication of appropriate connection nodes for sources from the point of view of minimising the number of overloaded lines and prospective costs of their uprating.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3