Diversity of the fungal community on mango associated with stem end rot and anthracnose diseases based on amplicon targeted metagenomics

Author:

Widiastuti Ani1ORCID,Suryanti 1,Giovanni Alvina Clara1,Paramita Niken Rasmi2

Affiliation:

1. Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia

2. Galasari Gunung Sejahtera, Gresik, East Java, Indonesia

Abstract

This study aimed to comprehend the diversity of the fungal community on Chokanan mango, a premium mango variety from Thailand which is widely cultivated in Indonesia, associated with stem end rot and anthracnose disease using high-throughput amplicon targeted metagenomics analysis by next-generation sequencing (NGS). Samples used in this study were freshly harvested healthy fruits at the age of 15-weeks (H15.ITS), healthy fruits after 2 weeks incubation (H17.ITS), 17-week old fruits (S17.ITS) with stem end rot symptoms, and 17-week old fruits (A17.ITS) with anthracnose symptoms. Results showed that the Basidiomycota phylum was dominant in the healthy fruits, while the Ascomycota phylum was found dominantly in sick fruits. Based on OTUs alignment of sequenced data, some species found to be dominantly associated with stem end rot disease in this study were Lasiodiplodia theobromae, Neofusicoccum cordaticola and N. mangiferae. Dominant species which were associated with mango anthracnose disease were Colletotrichum gloeosporioides, Botryosphaeria corticis, Volutella sp., and Pseudofusicoccum violacearum. These fungal genera were not found to be dominant in healthy fruits at the same age indicating that specific genera contributed to developing postharvest diseases on mango differently. The findings confirmed that the fungal community associated with stem end rot and anthracnose disease on mango was unique, and specific species contributed in particular disease development. Since mango is an important global commodity, these research findings will contribute significantly to global biosecurity.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3