Design and Verification of Sector Vortex Archimedean Spiral Phased Array Transducer for Improving Focus Acoustic Pressure

Author:

Lu Xiaodan1,Zeng Deping2

Affiliation:

1. State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering Chongqing Medical University Chongqing, China

2. National Engineering Research Center of Ultrasound Medicine Chongqing, China

Abstract

The emergence of high-intensity focused ultrasound applications brings great potential to establish noninvasive therapeutic treatment in place of conventional surgery. However, the development of ultrasonic technology also poses challenges to the design and manufacture of high-power ultrasound transducers with sufficient acoustic pressure. Here, the design of a sector vortex Archimedean spiral phased array transducer that is able to enhance focal acoustic pressure is proposed by maximizing the filling factor of the piezoelectric array. The transducer design was experimentally verified by hydrophone measurements and matched well with acoustic simulation studies. The focal deflection was shown to be feasible up to ±9 mm laterally and up to ±20 mm axially, where the effective focal acoustic pressure can be maintained above 50% and the level of the grating lobe below 30%. Furthermore, a homogeneous pressure distribution without secondary focus was observed in the pre-focal region of the transducer. The rational design of a high-intensity focused ultrasound transducer indicates promising development in the treatment of deep tissue thermal ablation for clinical applications.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3