Effect of Acoustic Enclosure on the Sound Transmission Loss of Multi-Layered Micro-Perforated Plates

Author:

El Kharras Brahim1,Garoum Mohammed1,Bybi Abdelmajid1

Affiliation:

1. Higher School of Technology in Salé, Material, Energy and Acoustics Team (MEAT) Mohammed V University in Rabat Salé, Médina, Morocco

Abstract

This study presents an examination of the transmission properties of multilayered partitions made up of multiple micro-perforated plates (MPPs) coupled to acoustic enclosures with general impedance boundaries. Multi-layered MPPs can lower the transmission while minimizing reflection in the source and receiving enclosure. Previous research has mainly focused on the double MPPs or triple MPPs partition itself. However, it is vital to analyze the in-situ sound transmission loss of the multi-layered MPP and their efficiency in a complex vibro-acoustic environment. The case when the multilayered MPPs are coupled to a receiving enclosure or coupled to both a source and receiving enclosure is investigated. The objective is to provide an analytical method to evaluate the transmission properties of multilayered MPPs coupled to acoustic enclosures while being computationally more efficient than the finite element method (FEM). Using the modified Fourier series for the acoustic pressure, a variational form for the acoustic and structure medium yields a completely coupled vibroacoustic system. A comparison between the sound transmission loss of the double MPPs, when mounted on an impedance tube and coupled to acoustics enclosures, shows the modal effect of the enclosures. The effect of enclosure shape, impedance boundary, perforation ratio, air gap thickness on the sound transmission properties of the double MPPs structure is examined for both cases. Finally, in both situations, the performance of triple MPP structure insulation is evaluated.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3