Corrosion of Pure Magnesium and Binary Magnesium Alloy in Ringer's Solution

Author:

Fijołek A.1ORCID

Affiliation:

1. AGH University of Krakow, Faculty of Foundry Engineering Reymonta 23 Str., 30-059 Krakow, Poland

Abstract

The work presents monitoring of the corrosion rate for pure magnesium and the binary magnesium alloy Mg72Zn28. Alloying elements with a purity of 99.9% were used. The melting was performed under the protection of inert gas - argon in an induction furnace. The liquid alloy was poured into a copper mold. In order to make amorphous ribbons, the obtained samples in the form of rods were re-melted on a melt spinner machine. The next step was to perform corrosion tests in Ringer's solution. Corrosion tests were carried out at a temperature of 37°C and pH 7.2. The purpose of using Ringer's solution was to recreate the conditions for the body fluids of the human body. The use of the following research methods, such as: OCP (open circuit potential), LSV (linear sweep voltammetry) and EIS (electrochemical impedance spectroscopy), was aimed at determining the corrosion resistance of the tested materials. Tests carried out in Ringer's solution showed that pure magnesium has significantly worse corrosion resistance than the binary Mg72Zn28 alloy. The conducted research also confirmed that the cathodic reaction takes place faster on the surface of amorphous ribbons. It was also confirmed that for both crystalline materials there is diffusion of chloride ions through the corrosion product layer. SEM-EDS tests were performed on the surface of an amorphous ribbon of the Mg72Zn28 alloy after corrosion in Ringer's solution.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3