Calculations of Non-Metallic Particles Removal from Liquid Aluminium to Top Slag

Author:

Żak P.L.1,Kuglin K.2,Szucki M.3ORCID,Kalisz D.1ORCID,Mrówka N.,Dand E.

Affiliation:

1. AGH University of Krakow, Krakow, Poland

2. NPA Skawina Sp. z o. o., Poland

3. Technische Universität Bergakademie Freiberg, Germany

Abstract

In the paper, the results of a numerical analysis of KCl and KF particles present in liquid aluminium assimilation to the slag are presented. The authors analysed particle movement in the slag model, which is based on buoyant, capillary, viscosity, Newton and repulsion forces, interfacial tensions at the interface of phases and surface energy during the particle movement through phases boundary. On the basis of the mathematical model, a computer programme was written to make simulations under different conditions. The results of particle position in the slag are presented for different particle radiuses: 1, 5, 10, 20 μm, and constant viscosity of the slag including velocity evolution of the velocity. Another approach was used to indicate the influence of slag viscosity on particle and slag penetration depth. During computations, selected viscosities of slag of 0.0012, 0.0015, 0.0018 [kg/m·s] were taken into account. Different comparisons were made for the chosen particle sizes. Each examination takes into account the impact of the particle type. The results clearly show that for larger particles the penetration depth is greater and viscosity of the slag has an impact on the velocity evolution during assimilation process.

Publisher

Polish Academy of Sciences Chancellery

Reference1 articles.

1. [1] Instone, S., Buchholz, A. & Gruen, G. U. (2008). Inclusion transport phenomena in casting furnaces. Light Metals (TMS). 811-816 . [2] Prillhofer, B., Antrekowitsch, H., Böttcher, H. & Enright, P. (2008). Non-metallic inclusions in the secondary aluminium industry for the production of aerospace alloys. Light Metals (TMS). 603-608. [3] Johansen, S.T., Gradahl, S. & Myrbostad, E. (1996). Experimental determination of bubble sizes in melt refining reactors. Light Metals (TMS). 1027-1031. [4] Johansen, S.T., Robertson, D.G.C., Woje, K. & Engh, T.A. (1988). Fluid dynamics in bubble stirred ladles: Part I. Experiments. Metallurgical Transactions B 19, 745-754, DOI: https://doi.org/10.1007/BF02650194. [5] Nakaoka, T., Taniguchi, S., Matsumoto, K. & Johansen, S. T. (2001). Particle size grouping method of inclusion agglomeration and its application to water model experiments. ISIJ International. 41, 1103-1111. DOI: https://doi.org/10.2355/isijinternational.41.1103. [6] Saffman, P.G. & Turner, J.S. (1956). On the collision of drops in turbulent clouds. Journal of Fluid Mechanics. 1, 16-30. DOI: https: //doi.org/10.1017/S0022112056000020. [7] Wang, L., Lee, H. G. & Hayes, P. (1996). Prediction of the optimum bubble size for inclusion removal from molten steel by flotation. ISIJ International. 36, 7-16, DOI: https://doi.org/10.2355/isijinternational.36.7. [8] Schulze, H. J. (1989). Hydrodynamics of bubble-mineral particle collisions. Mineral Processing and Extractive Metallurgy Review. 5, 43-76. https://doi.org/10.1080/08827508908952644. [9] Bouris, D. & Bergeles, G. (1998). Investigation of inclusion re-entrainment from the steel-slag interface. Metallurgical and Materials Transactions B. 29, 641-649. DOI: https://doi.org/10.1007/s11663-998-0099-6. [10] Strandh, J., Nakajima, K., Eriksson, R. & Jonsson, P. (2005). Solid inclusion transfer at a steel-slag interface with focus on tundish conditions. ISIJ International. 45, 1597-1606, DOI: https://doi.org/10.2355/isijinternational.45.1597 [11] Votava, I. & Matiašovský, K. (1973). Measurement of viscosity of fused salts. II. viscosity of molten binary mixtures on the cryolite basis. Chemical Papers. 27(5), 582-587. [12] Suchora-Kozakiewicz, M. & Jackowski, J. (2017). Evaluation of interfacial tension in the liquid aluminum alloy – liquid slag system. Journal of Casting & Materials Engineering. 1(1), 11-14. DOI: https://doi.org/10.7494/jcme.2017.1.1.11. [13] Zhang, L. & Taniguchi, S. (2000). Fundamentals of inclusion removal from liquid steel by bubble flotation. International Materials Reviews. 45(2), 59-82. DOI: https://doi.org/10.1179/095066000101528313. [14] Żak, P. L., Kalisz, D., Lelito, J., Szucki, M., Gracz, B., & Suchy, J. S. (2015). Modelling of non-metallic particles motion process in foundry alloys. Metalurgija. 54(2), 357-360. [15] Dewing, E.W. (1972). Thermodynamics of the system NaF-AlF3. part III: Activities in liquid mixtures. Metallurgical Transactions B. 3, 499-505, DOI: https://doi.org/10.1007/BF02642055. [16] Dewing, E. (1970). Thermodynamics of the system NaF-AlF3 part I: The equilibrium 6NaF(s) + Al = Na3AlF6(s) + 3Na. Metall. Transactions. 1, 1691-1694, DOI: https://doi.org/10.1007/BF02642018. [17] Ransley, C.E. & Neufeld, H. (1950). The solubility relationships in the Al-Na and Al-Si systems. Journal of Institute of Metals. 78, 25-46. [18] Kvande, H. (1980) Solubility of aluminium in NaF-AlF3-Al2O3 melts. Light Metals. 171-182. [19] Dewing, E.W. (1980). Thermodynamic functions for LiF-AlF3 mixtures at 1293 k. Metallurgical Transactions B. 11, 245–249, DOI: https://doi.org/10.1007/BF02668408. [20] Wang, L.T., Zhang, Q.Y., Deng, C.H. & Li, Z.B. (2005). Mathematical model for removal of inclusion in molten steel by injecting gas at ladle shroud. ISIJ International. 45, 1138-1144, DOI: https://doi.org/10.2355/isijinternational. 45.1138. [21] Suchora-Kozakiewicz, M. & Jackowski, J. (2017). The way of estimating interphase tension in the liquid aluminum alloy – liquid slag. Composites Theory Practice. 17(2), 73-78.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3