1. [1] Instone, S., Buchholz, A. & Gruen, G. U. (2008). Inclusion transport phenomena in casting furnaces. Light Metals (TMS). 811-816 . [2] Prillhofer, B., Antrekowitsch, H., Böttcher, H. & Enright, P. (2008). Non-metallic inclusions in the secondary aluminium industry for the production of aerospace alloys. Light Metals (TMS). 603-608. [3] Johansen, S.T., Gradahl, S. & Myrbostad, E. (1996). Experimental determination of bubble sizes in melt refining reactors. Light Metals (TMS). 1027-1031. [4] Johansen, S.T., Robertson, D.G.C., Woje, K. & Engh, T.A. (1988). Fluid dynamics in bubble stirred ladles: Part I. Experiments. Metallurgical Transactions B 19, 745-754, DOI: https://doi.org/10.1007/BF02650194. [5] Nakaoka, T., Taniguchi, S., Matsumoto, K. & Johansen, S. T. (2001). Particle size grouping method of inclusion agglomeration and its application to water model experiments. ISIJ International. 41, 1103-1111. DOI: https://doi.org/10.2355/isijinternational.41.1103. [6] Saffman, P.G. & Turner, J.S. (1956). On the collision of drops in turbulent clouds. Journal of Fluid Mechanics. 1, 16-30. DOI: https: //doi.org/10.1017/S0022112056000020. [7] Wang, L., Lee, H. G. & Hayes, P. (1996). Prediction of the optimum bubble size for inclusion removal from molten steel by flotation. ISIJ International. 36, 7-16, DOI: https://doi.org/10.2355/isijinternational.36.7. [8] Schulze, H. J. (1989). Hydrodynamics of bubble-mineral particle collisions. Mineral Processing and Extractive Metallurgy Review. 5, 43-76. https://doi.org/10.1080/08827508908952644. [9] Bouris, D. & Bergeles, G. (1998). Investigation of inclusion re-entrainment from the steel-slag interface. Metallurgical and Materials Transactions B. 29, 641-649. DOI: https://doi.org/10.1007/s11663-998-0099-6. [10] Strandh, J., Nakajima, K., Eriksson, R. & Jonsson, P. (2005). Solid inclusion transfer at a steel-slag interface with focus on tundish conditions. ISIJ International. 45, 1597-1606, DOI: https://doi.org/10.2355/isijinternational.45.1597 [11] Votava, I. & Matiašovský, K. (1973). Measurement of viscosity of fused salts. II. viscosity of molten binary mixtures on the cryolite basis. Chemical Papers. 27(5), 582-587. [12] Suchora-Kozakiewicz, M. & Jackowski, J. (2017). Evaluation of interfacial tension in the liquid aluminum alloy – liquid slag system. Journal of Casting & Materials Engineering. 1(1), 11-14. DOI: https://doi.org/10.7494/jcme.2017.1.1.11. [13] Zhang, L. & Taniguchi, S. (2000). Fundamentals of inclusion removal from liquid steel by bubble flotation. International Materials Reviews. 45(2), 59-82. DOI: https://doi.org/10.1179/095066000101528313. [14] Żak, P. L., Kalisz, D., Lelito, J., Szucki, M., Gracz, B., & Suchy, J. S. (2015). Modelling of non-metallic particles motion process in foundry alloys. Metalurgija. 54(2), 357-360. [15] Dewing, E.W. (1972). Thermodynamics of the system NaF-AlF3. part III: Activities in liquid mixtures. Metallurgical Transactions B. 3, 499-505, DOI: https://doi.org/10.1007/BF02642055. [16] Dewing, E. (1970). Thermodynamics of the system NaF-AlF3 part I: The equilibrium 6NaF(s) + Al = Na3AlF6(s) + 3Na. Metall. Transactions. 1, 1691-1694, DOI: https://doi.org/10.1007/BF02642018. [17] Ransley, C.E. & Neufeld, H. (1950). The solubility relationships in the Al-Na and Al-Si systems. Journal of Institute of Metals. 78, 25-46. [18] Kvande, H. (1980) Solubility of aluminium in NaF-AlF3-Al2O3 melts. Light Metals. 171-182. [19] Dewing, E.W. (1980). Thermodynamic functions for LiF-AlF3 mixtures at 1293 k. Metallurgical Transactions B. 11, 245–249, DOI: https://doi.org/10.1007/BF02668408. [20] Wang, L.T., Zhang, Q.Y., Deng, C.H. & Li, Z.B. (2005). Mathematical model for removal of inclusion in molten steel by injecting gas at ladle shroud. ISIJ International. 45, 1138-1144, DOI: https://doi.org/10.2355/isijinternational. 45.1138. [21] Suchora-Kozakiewicz, M. & Jackowski, J. (2017). The way of estimating interphase tension in the liquid aluminum alloy – liquid slag. Composites Theory Practice. 17(2), 73-78.