Synthesis and Characterization of Novel Aluminum Composites: A Compo-Casting Approach with ZrO2 , Al2O3 , and SiC

Author:

Farahany S.1,Hamdani M.K.2,Salehloo M.R.2,Krol M.2,Cheraghali E.3

Affiliation:

1. Buein Zahra Technical University, Iran

2. Iran University of Science and Technology, Iran

3. Silesian University of Technology

Abstract

The present study evaluates the microstructural features, mechanical properties, and wear characteristics of the newly developed hybrid composite of A356/ZrO2/Al2O3/SiC produced by compo-casting at 605±5 °C, 600 rpm for 15 minutes with less than 30% solid fraction in which Bi and Sn were added separately to the matrix before introducing reinforcements. FESEM micrographs and corresponding EDS illustrated the successful incorporation of particles in the matrix. Fine particles of ZrO2 were observed close to the coarse Al2O3, and SiC particles, along with Bi and Sn elements, were detected at the eutectic evolution region. The A356+Bi/Al2O3+ZrO2+SiC hybrid composite exhibited the lowest specific wear rate (1.642 ×10-7cm3/Nm) and friction coefficient (0.31) under applied loads of 5, 10, and 20 N, in line with the highest hardness (73.4 HBN). Analysis of the worn surfaces revealed that the wear mechanism is mostly adhesive in all synthesized composites, which changed to the combination of adhesive and abrasive mode in the case containing Bi and SiC. Inserting Bi not only leads to the refinement of eutectic Si but also enhances the adhesion between the matrix/particles and improves lubricity. This, in turn, reduces the wear rate and coefficient of friction, ultimately improving the performance of the hybrid composite.

Publisher

Polish Academy of Sciences Chancellery

Reference1 articles.

1. [1] Liang, Y.H., Wang, H.Y. & Yang, Y.F. (2008). Evolution process of the synthesis of TiC in the Cu-Ti-C system, Journal of Allloys and Compounds. 452(2), 298-303. https://doi.org/10.1016/j.jallcom.2006.11.024. [2] Sahraeinejad, S., Izadi, H., Haghshenas, M. & Gerlich, A.P. (2015). Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters. Materials Science and Engineering: A. 626, 505-513. https://doi.org/https://doi.org/10.1016/j.msea. 2014.12.077. [3] Devaraju, A., Kumar, A. & Kotiveerachari, B. (2013). Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing. Transactions of Nonferrous Metals Society of China (English Edition). 23(5), 1275-1280. https://doi.org/10.1016/S1003-6326(13)62593-5. [4] Rajmohan, T., Palanikumar, K. & Ranganathan, S. (2013). Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Transactions of Nonferrous Metals Society of China (English Edition). 23(9), 2509-2517. https://doi.org/10.1016/S1003-6326(13)62762-4. [5] Shayan, M., Eghbali, B. & Niroumand, B. (2019). Synthesis of AA2024-(SiO2np+TiO2np) hybrid nanocomposite via stir casting process. Materials Science and Engineering A. 756, 484-491. https://doi.org/10.1016/j.msea.2019.04.089. [6] Rajmohan, T., Palanikumar, K. & Ranganathan, S. (2013). Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Transactions of Nonferrous Metals Society of China. 23(9), 2509-2517. https://doi.org/https://doi.org/10.1016/S1003-6326(13)62762-4. [7] Lemine, A.S., Fayyaz, O., Yusuf, M., Shakoor, R.A., Ahmad, Z., Bhadra, J. & Al-Thani, N.J. (2022). Microstructure and mechanical properties of aluminum matrix composites with bimodal-sized hybrid NbC-B4C reinforcements. Materials Today Communications. 33, 104512, 1-10. https://doi.org/https://doi.org/10.1016/ j.mtcomm.2022.104512. [8] Singh, J. & Chauhan, A. (2016). Characterization of hybrid aluminum matrix composites for advanced applications - A review. Journal of Materials Research and Technology. 5(2), 159-169. https://doi.org/10.1016/j.jmrt.2015.05.004. [9] Fanani, E.W.A., Surojo, E., Prabowo, A.R. & Akbar, H.I. (2021). Recent progress in hybrid aluminum composite: Manufacturing and application, Metals (Basel). 11(12), 1919, 1-30. https://doi.org/10.3390/met11121919. [10] Chandel, R., Sharma, N. & Bansal, S.A. (2021). A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent Materials. 4, 1243-1257. https://doi.org/10.1007/s42247-021-00186-6. [11] James, J.S., Ganesan, M., Santhamoorthy, P. & Kuppan, P. (2018). Development of hybrid aluminium metal matrix composite and study of property. Materials Today Proceedings. 5(5), 13048-13054. https://doi.org/https:// doi.org/10.1016/j.matpr.2018.02.291. [12] Srivyas, P.D. & Charoo, M.S. (2019). Application of hybrid aluminum matrix composite in automotive industry, in: Materials Today Proceedings. 18(7), 3189-3200. https://doi.org/10.1016/j.matpr.2019.07.195. [13] Pranavi, U., Venkateshwar Reddy, P., Venukumar, S. & Cheepu, M. (2022). Evaluation of mechanical and wear properties of Al 5059/B4C/Al2O3 hybrid metal matrix composites. Journal of Composites Science. 6(3), 86, 1-13. https://doi.org/10.3390/jcs6030086. [14] Kumaran, S.T., Uthayakumar, M., Aravindan, S., Rajesh, S. (2016). Dry sliding wear behavior of SiC and B4C-reinforced AA6351 metal matrix composite produced by stir casting process, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 230(2), 484-491. https://doi.org/10.1177/1464420715579302. [15] Khatkar, S.K., Suri, N.M., Kant, S. & Pankaj, (2018). A review on mechanical and tribological properties of graphite reinforced self lubricating hybrid metal matrix composites. Reviews on Advanced Materials Science. 56, 1-20. https://doi.org/10.1515/rams-2018-0036. [16] Malaki, M., Fadaei Tehrani, A., Niroumand, B. & Gupta, M. (2021). Wettability in metal matrix composites. Metals. 11(7), 1034, 1-24. https://doi.org/10.3390/met11071034. [17] Amirkhanlou, S. & Niroumand, B. (2010). Synthesis and characterization of 356-SiCp composites by stir casting and compocasting methods. Transactions of Nonferrous Metals Society of China. 20(3), 788-793. https://doi.org/https://doi.org/10.1016/S1003-6326(10)60582-1. [18] Ghandvar, H., Farahany, S. & Idris, M.H. (2018). Effect of Wettability Enhancement of SiC Particles on Impact Toughness and Dry Sliding Wear Behavior of Compocasted A356/20SiCp Composites. Tribology Transactions. 61, 88-99. https://doi.org/10.1080/10402004.2016.1275902. [19] Geng, L., Zhang, H., Li, H., Guan, L. & Huang, L. (2010). Effects of Mg content on microstructure and mechanical properties of SiCp/Al-Mg composites fabricated by semi-solid stirring technique. Transactions of Nonferrous Metals Society of China 20(10), 1851-1855. https://doi.org/https://doi.org/10.1016/S1003-6326(09)60385-X. [20] Lashgari, H.R., Sufizadeh, A.R. & Emamy, M. (2010). The effect of strontium on the microstructure and wear properties of A356–10%B4C cast composites. Materials & Design. 31(4), 2187-2195. https://doi.org/10.1016/ J.MATDES.2009.10.049. [21] Sobczak, N. (2005). Effects of titanium on wettability and interfaces in aluminum/ceramic systems. In K. Ewsuk, K. Nogi, M. Reiterer, A. Tomsia, S. Jill Glass, R. Waesche, K. Uematsu & M. Naito (Eds.), Characterization & Control of Interfaces for High Quality Advanced Materials (81-91). OH, USA 83: The American Ceramic Society: Columbus. [22] Wójcik-Grzybek, D., Frydman, K., Sobczak, N., Nowak, R., Piatkowska, A. & Pietrzak, K. (2017). Effect of Ti and Zr additions on wettability and work of adhesion in Ag/c system. ElectronicMaterials. 45(1), 4-11. [23] Cao, C., Chen, L., Xu, J., Choi, H. & Li, X. (2016). Strengthening Al–Bi–TiC0.7N0.3 nanocomposites by Cu addition and grain refinement. Materials Science and Engineering: A. 651, 332-335. https://doi.org/https://doi.org/ 10.1016/j.msea.2015.10.126. [24] Tao, Z., Guo, Q., Gao, X. & Liu, L. (2011). The wettability and interface thermal resistance of copper/graphite system with an addition of chromium. Materials Chemistry and Physics. 128(1-2), 228-232. https://doi.org/https://doi.org/ 10.1016/j.matchemphys.2011.03.003. [25] Dasch, J.M., Ang, C.C., Wong, C.A., Waldo, R.A., Chester, D., Cheng, Y.T., Powell, B.R., Weiner, A.M. & Konca, E. (2009). The effect of free-machining elements on dry machining of B319 aluminum alloy. Journal of Materials Processing Technology. 209(10), 4638-4644. https://doi.org/10.1016/j.jmatprotec.2008.11.041. [26] Farahany, S., Ghandvar, H., Nordin, N.A., Ourdjini, A. & Idris, M.H. (2016). Effect of primary and eutectic Mg2Si crystal modifications on the mechanical properties and sliding wear behaviour of an Al–20Mg2Si–2Cu–xBi composite. Journal of Materials Science & Technology. 32(11), 1083-1097. https://doi.org/10.1016/ j.jmst.2016.01.014. [27] Ghandvar, H., Farahany, S. & Abu Bakar, T.A. (2020). A novel method to enhance the performance of an ex-situ Al/Si-YSZ metal matrix composite. Journal of Alloys and Compounds. 823, 153673, 1-14. https://doi.org/10.1016/J.JALLCOM.2020.153673. [28] Barzani, M.M., Farahany, S., Yusof, N.M. & Ourdjini, A. (2013). The influence of bismuth, antimony, and strontium on microstructure, thermal, and machinability of aluminum-silicon alloy. Materials and Manufacturing Processes. 28(11), 1184-1190. https://doi.org/10.1080/10426914. 2013.792425. [29] Yusof, N.M., Razavykia, A., Farahany, S. & Esmaeilzadeh, A. (2016). Effect of modifier elements on machinability of Al-20%Mg2Si metal matrix composite during dry turning. Machining Science and Technology. 20(3), 460-474. https://doi.org/10.1080/10910344.2016.1191030. [30] Mohanavel, V., Rajan, K., Suresh Kumar, S., Vijayan, G. & Vijayanand, M.S. (2018). Study on mechanical properties of graphite particulates reinforced aluminium matrix composite fabricated by stir casting technique. Materials Today Proceedings. 5(1), 2945-2950. https://doi.org/10.1016/j.matpr.2018.01.090. [31] Sharma, P., Sharma, S. & Khanduja, D. (2016). Effect of graphite reinforcement on physical and mechanical properties of aluminum metal matrix composites. Particulate Science and Technology. 34 (1), 17-22. https://doi.org/10.1080/02726351.2015.1031924. [32] Chandrasheker, J. Raju, N.V.S. (2022). Effect of Graphite Reinforcement on AA7050/B4C Metal Matrix Composites. AIP Conference Proceedings. 2648(1), 030013. https://doi.org/10.1063/5.0117657. [33] Farahany, S., Ourdjini, A., Bakar, T.A.A. & Idris, M.H. (2014). On the refinement mechanism of silicon in Al-Si-Cu-Zn alloy with addition of bismuth. Metallurgical and Materials Transactions A. 45, 1085–1088. https://doi.org/10.1007/s11661-013-2158-0. [34] Hemanth, J. (2005). Tribological behavior of cryogenically treated B4Cp/Al–12% Si composites. Wear. 258, 1732–1744. https://doi.org/10.1016/J.WEAR.2004.12.009. [35] Uvaraja, V.C. & Natarajan, N. (2012). Optimization of Friction and Wear Behaviour in Hybrid Metal Matrix Composites Using Taguchi Technique. Journal of Minerals and Materials Characterization and Engineering. 11, 757-768. https://doi.org/10.4236/jmmce.2012.118063. [36] Sharma, A., Sharma, V.M. & Paul, J. (2019). A comparative study on microstructural evolution and surface properties of graphene/CNT reinforced Al6061−SiC hybrid surface composite fabricated via friction stir processing. Transactions of Nonferrous Metals Society of China (English Edition). 29(10), 2005-2026. https://doi.org/10.1016/S1003-6326(19)65108-3. [37] Amra, M., Ranjbar, K. & Hosseini, S.A. (2018). Microstructure and wear performance of Al5083/CeO2/SiC mono and hybrid surface composites fabricated by friction stir processing. Transactions of Nonferrous Metals Society of China (English Edition). 28(5), 866-878. https://doi.org/10.1016/S1003-6326(18)64720-X. [38] Dinaharan, I. & Murugan, N. (2012). Dry sliding wear behavior of AA6061/ZrB 2 in-situ composite. Transactions of Nonferrous Metals Society of China (English Edition). 22(4), 810-818. https://doi.org/10.1016/S1003-6326(11)61249-1. [39] Riahi, A.R. & Alpas, A.T. (2001). The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear. 251 (1-12), 1396-1407. https://doi.org/10.1016/s0043-1648(01)00796-7. [40] Archard, J.F. (1953). Contact and Rubbing of Flat Surfaces. Journal of Applied Physics. 24(8), 981–988. https://doi.org/10.1063/1.1721448. [41] García, C., Martín, F., Herranz, G., Berges, C. & Romero, A. (2018). Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding, Wear. 414–415. https://doi.org/10.1016/j.wear.2018.08.010. [42] Pei, X., Pu, W., Yang, J. & Zhang, Y. (2020). Friction and adhesive wear behavior caused by periodic impact in mixed-lubricated point contacts. Advances in Mechanical Engineering. 12(2). https://doi.org/10.1177/1687814020901666. [43] Popova, E., Popov, V.L. & Kim, D.E. (2018). 60 years of Rabinowicz’ criterion for adhesive wear. Friction. 6, 341-348. https://doi.org/10.1007/s40544-018-0240-8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3