Image Processing Techniques for Crack Detection in MPI of Springs

Author:

Marciniak Marcin M.1

Affiliation:

1. Rzeszow University of Technology, Poland

Abstract

This study investigates image processing techniques for detecting surface cracks in spring steel components, with a focus on applications like Magnetic Particle Inspection (MPI) in industries such as railways and automotive. The research details a comprehensive methodology that covers data collection, software tools, and image processing methods. Various techniques, including Canny edge detection, Hough Transform, Gabor Filters, and Convolutional Neural Networks (CNNs), are evaluated for their effectiveness in crack detection. The study identifies the most successful methods, providing valuable insights into their performance. The paper also introduces a novel batch processing approach for efficient and automated crack detection across multiple images. The trade-offs between detection accuracy and processing speed are analyzed for the Morphological Top-hat filter and Canny edge filter methods. The Top-hat method, with thresholding after filtering, excelled in crack detection, with no false positives in tested images. The Canny edge filter, while efficient with adjusted parameters, needs further optimization for reducing false positives. In conclusion, the Top-hat method offers an efficient approach for crack detection during MPI. This research offers a foundation for developing advanced automated crack detection system, not only to spring sector but also extends to various industrial processes such as casting and forging tools and products, thereby widening the scope of applicability.

Publisher

Polish Academy of Sciences Chancellery

Reference1 articles.

1. [1] Rao, J.P., Li, G.Q., & Yang, Z.Z. (2011). Research and application of new oxygen lance for BOF steelmaking. Advanced Materials Research. 335, 74-79. https://doi.org/10.4028/www.scientific.net/AMR.335-336.74. [2] Allemand, B., Bruchet P. & Champinot, C. (2001). Theoretical and experimental study of supersonic oxygen jets. Industrial application in EAF. Metallurgical Research & Technology. 98(6), 571-587. https://doi.org/10.1051/ metal:2001107. [3] Li, L., Li, M. & Shao, L. (2020). Physical and mathematical modeling of swirling gas jets impinging onto a liquid bath using a novel nozzles‐twisted lance. Steel Research International. 91(7), 54-60. https://doi.org/10.1002/ srin.201900684. [4] Wang, X. (2022). Numerical simulation of jet characteristics and gas liquid two phase behavior of swirling oxygen lance. University of Science and Technology Liaoning. https://doi.org/10.26923/d.cnki.gasgc.2021.000081. [5] Higuchi, Y. & Tago, Y. (2003). Effect of nozzle twisted lance on jet behavior and spitting rate in top blown process. ISIJ international. 43(9), 1410-1414. https://doi.org/10.2355 /isijinternational.43.1410. [6] Li, M., Li, Q. & Kuang, S. (2016). Computational investigation of the splashing phenomenon induced by the impingement of multiple supersonic jets onto a molten slag–metal melt pool. Industrial & Engineering Chemistry Research. 55(12), 3630-3640. https://doi.org/10.1021/ acs.iecr.5b03301. [7] Li, Q., Li, M. & Kuang, S, B. (2014). Computational study on the behaviours of supersonic jets and their impingement onto molten liquid free surface in BOF steelmaking. Canadian Metallurgical Quarterly. 53(3), 340-351. https://doi.org/10.1179/1879139514Y.0000000124. [8] Li, M., Li, Q. & Zou Z. (2017). Computational investigation of swirling supersonic jets generated through a nozzle-twisted lance. Metallurgical and Materials Transactions B. 48, 713-725. https://doi.org/10.1007/s11663-016-0851-2. [9] Muñoz-Esparza, D., Buchlin, J.M. & Myrillas, K. (2012). Numerical investigation of impinging gas jets onto deformable liquid layers. Applied Mathematical Modelling. 36(6), 2687-2700. https://doi.org/10.1016/j.apm.2011.09.052. [10] Zhou, X., Ersson, M. & Zhong, L. (2014). Mathematical and physical simulation of a top blown converter. Steel research international. 85(2), 273-281. https://doi.org/10.1002/ srin.201300310. [11] Hu, S., Zhu, R., & Dong, K. (2018). Effect of oxygen flow rate and temperature on supersonic jet characteristics and fluid flow in an EAF molten bath. Canadian Metallurgical Quarterly. 57(2), 219-234. https://doi.org/10.1080/00084433. 2017.1409945. [12] Wang, W., Yuan, Z., & Matsuura, H. (2010). Three-dimensional compressible flow simulation of top-blown multiple jets in converter. ISIJ International. 50(4), 491-500. https://doi.org/10.2355/isijinternational.50.491. [13] Li, M., Li, L. & Zhang, B. (2020). Numerical analysis of the particle-induced effect on gas flow in a supersonic powder-laden oxygen jet. Metallurgical and Materials Transactions B. 51, 1718-1730. https://doi.org/10.1007/s11663-020-01855-3. [14] Feng, C., Zhu, R. & Dong, K. (2021). Effects of ambient temperature and powder gas ratio on jet characteristics of O2+ CO2 and CaO particles injected by a swirl-type oxygen lance nozzle. Powder Technology. 388, 537-553. https://doi.org/10.1016/j.powtec.2021.04.085. [15] Lv, M., Zhu, R. & Wang H. (2013). Simulation and application of swirl-type oxygen lance in vanadium extraction converter. Steel Research International. 84(3), 304-312. https://doi.org/10.1002/srin.201200136. [16] Lv, M., Zhu, R. & Guo, Y.G. (2013). Simulation of flowfluid in the BOF steelmaking process. Metallurgical and Materials Transactions B. 44, 1560-1571. https://doi.org/10.1007/ s11663-013-9935-4. [17] Alam, M., Naser, J., & Brooks, G. (2010). Computational fluid dynamics simulation of supersonic oxygen jet behavior at steelmaking temperature. Metallurgical and Materials Transactions B. 41, 636-645. https://doi.org/10.1007/s11663-010-9341-0. [18] Liu, F., Sun, D. & Zhu, R. (2017). Effect of nozzle twisted oxygen lance on flow field and dephosphorization rate in converter steelmaking process. Ironmaking & Steelmaking. 44(9), 640-648. https://doi.org/10.1080/03019233. 2016.1226562. [19] Zhong, L., Zhu, Y. & Jiang, M. (2005). Cold modelling of slag splashing in LD furnace by oxygen lance with twisted nozzle tip. Steel Research International. 76(9), 611-615. https://doi.org/10.1002/srin.200506065. [20] Liu, G., Liu, K., & Han, P. (2021). Splash sheet characteristics induced by the impingement of multiple jets in a steelmaking converter. Ironmaking & Steelmaking. 48(1), 25-32. https://doi.org/10.1080/03019233.2020.1720453.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3