Comparison of the Mechanical Properties of Ductile Cast Iron Intended for Gas Gate Valves with Nickel Cast Iron with an Austenitic Matrix

Author:

Rączka A.1,Szczęsny A.2ORCID,Kopyciński D.2ORCID

Affiliation:

1. Fabryka Armatur JAFAR S.A. Kadyiego 12 Street 38-200 Jasło, Poland

2. AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-065 Kraków, Poland

Abstract

The study presents a comparison of the results of structural tests, impact strength and strength properties of cast iron EN-GJS-400-15, which is produced in industrial conditions and the ductile cast iron, with addition of nickel, in austenitic matrix. Due to the ongoing energy transformation and attempts to inject hydrogen into existing gas grids, gas fittings manufacturers are looking for materials that will be more resistant to the destructive effects of hydrogen than the currently used ductile cast iron. The aim of the work was to obtain cast iron with the addition of nickel (about 20%) with similar strength parameters, better impact strength, both at room temperature and at lower temperatures, as well as a stable austenitic matrix in ductile cast iron. All assumptions were achieved. In the future, research should be undertaken to develop an economically optimal chemical composition, without a significant loss of strength properties, and the resistance of gate valves made of austenitic cast iron to the destructive effects of hydrogen should be examined. The work is preliminary research.

Publisher

Polish Academy of Sciences Chancellery

Reference7 articles.

1. [1] Kanellopoulos, K., Busch, S., De Felice, M., Giaccaria, S. and Costescu, A. (2022). Blending hydrogen from electrolysis into the European gas grid. EUR 30951 EN, Publications Office of the European Union, Luxembourg, 2022, ISBN 978-92-76-46346-7, DOI:10.2760/908387, JRC 126763. [2] ToGetAir. (2024). Hydrogen Needs Strong Support. Retrieved December, 18, 2023 from https://raport.togetair.eu/ogien/energia-przyszlosci/wodor-potrzebuje-mocnego-wsparcia. (in Polish). [3] Jaworski, J., Kukulska-Zając, E. &

2. Kułaga, P. (2019). Selected issue regarding the impact of addition of hydrogen to natural gas on the elements of the gas system. Nafta-Gaz. 10, 625-632. DOI: 10.18668/NG.2019.10.04. (in Polish). [4] Bąkowski, K, (2007). Gas grids and installations - guide. Warszawa: WNT. (in Polish). [5] EN 13774:2013 Valves for gas distribution system with maximum operating pressure less than or equal to 16 bar - Performance requirements. [6] Regulation of the Minister of Economy of April 26, 2013 on the technical conditions to be met by gas grids and their location. (Dz.U z 2013 r., Nr 0, poz. 640). (in Polish). [7] Information Publication 11/I, Safe use of hydrogen as fuel in commercial industrial applications, Polish Ship Register, Gdańsk 2021, p 36 (in Polish) [8] Sahiluoma, P., Yagodzinskyy, Y., Forsström, A., Hänninen, H. &

3. Bossuyt, S. (2021). Hydrogen embrittlement of nodular cast iron. Materials and Corrosion. 72(1-2), 245-254. DOI: 10.1002/maco.202011682. [9] Yoshimoto, T., Matsuo, T. &

4. Ikeda, T. (2019). The effect of graphite size on hydrogen absorption and tensile properties of ferritic ductile cast iron. Procedia Structural Integrity. 14, 18-25. https://doi.org/10.1016/j.prostr.2019.05.004. [10] Elboujdaini E. (2011). Hydrogen-Induced Cracking and Sulfide Stress Cracking. Uhlig's Corrosion Handbook. R. Winston Revie (red.). Wiley, 183-194. [11] Gangloff, R.P. (2012). Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing. [12] Jiaxing Liu, Mingjiu Zhao, Lijian Rong (2023). Overview of hydrogen-resistant alloys for high-pressure hydrogen environment: on the hydrogen energy structural materials. Clean Energy. 7(1), 99-115. https://doi.org/10.1093/ce/zkad009. [13] Dwivedi, S.K. &

5. Vishwakarma. M. (2018). Hydrogen embrittlement in different materials: A review. International Journal of Hydrogen Energy. 43(46), 21603-21616. https://doi.org/10.1016/j.ijhydene.2018.09.201. [14] Dziadur, W., Lisak, J., &

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3