Remelting of Aluminum Scrap Into Billets Using Direct Chill Casting

Author:

Rajagukguk Kardo123ORCID,Suyitno Suyitno43,Saptoadi Harwin1,Kusumaningtyas I. K. Indraswari1,Arifvianto Budi13,Mahardika Muslim13

Affiliation:

1. Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55281, Indonesia

2. Department of Mechanical Engineering, Institut Teknologi Sumatera (ITERA), Jl. Terusan Ryacudu, South Lampung, Lampung 35365, Indonesia

3. Center for Innovation of Medical Equipment and Devices (CIMEDs), Universitas Gadjah Mada, Jl. Teknika Utara Yogyakarta 55281, Indonesia

4. Department of Mechanical Engineering, Faculty of Engineering, Universitas Tidar, Jl. Kapten Suparman 39, North Magelang, 56116, Indonesia

Abstract

An as-cast aluminum billet with a diameter of 100 mm has been successfully prepared from aluminum scrap by using direct chill (DC) casting method. This study aims to investigate the microstructure and mechanical properties of such as-cast billets. Four locations along a cross-section of the as-cast billet radius were evaluated. The results show that the structures of the as-cast billet are a thin layer of coarse columnar grains at the solidified shell, feathery grains at the half radius of the billet, and coarse equiaxed grains at the billet center. The grain size tends to decrease from the center to the surface of the as-cast billet. The ultimate tensile strength (UTS) and the hardness values obtained from this research slightly increase from the center to the surface of the as-cast billet. The distribution of Mg, Fe, and Si elements over the cross-section of the as-cast billet is inhomogeneous. The segregation analysis shows that Si has negative segregation towards the surface, positive segregation at the middle, and negative segregation at the center of the as-cast billet. On the other hand, the Mg element is distributed uniformly in small quantities in the cross-section of the as-cast billet.

Publisher

Polish Academy of Sciences Chancellery

Reference1 articles.

1. [1] Raabe, D., Ponge, D., Uggowitzer, P., Roscher, M., Paolantonio, M., Liu, C., Antrekowitsch, H., Kozeschnik, E., Seidmann, D., Gault, B., De Geuser, F., Dechamps, A., Hutchinson, C., Liu, C., Li, Z., Prangnell, P., Robson, J., Shanthraj, P., Vakili, S. & Pogatscher, S. (2022). Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science. 128, 1-150, 100947. DOI:10.1016/j.pmatsci.2022.100947. [2] Jamaly, N., Haghdadi, N. & Phillion, A.B. (2015). Microstructure, macrosegregation, and thermal analysis of direct chill cast AA5182 aluminum alloy. Journal of Materials Engineering and Performance. 24, 2067-2073. DOI: 10.1007/s11665-015-1480-7. [3] Vieth, P., Borgert, T., Homberg, W. & Grundmeier, G. (2022). Assessment of mechanical and optical properties of Al 6060 alloy particles by removal of contaminants. Advanced Engineering Materials. 25(3), 2201081. DOI: 10.1002/adem.202201081. [4] Wagstaff, R.S., Wagstaff, B.R. & Allanore, A. (2017). Tramp element accumulation and its effects on secondary phase particles. The Minerals, Metals & Materials Society. 1097-1103. DOI: 10.1007/978-3-319-51541-0. [5] Soo, V.K., Peeters, J., Paraskevas, D., Compston, P., Doolan, M. & Duflou, J.R. (2018). Sustainable aluminium recycling of end-of-life products: A joining techniques perspective. Journal of Cleaner Production. 178, 119-132. DOI: 10.1016/j.jclepro.2017.12.235. [6] Al-Helal, K., Patel, J.B., Scamans, G.M. & Fan, Z. (2020). Direct chill casting and extrusion of AA6111 aluminum alloy formulated from taint tabor scrap. Materials. 13(24), 5740, 1-11. DOI: 10.3390/ma13245740. [7] Graedel, T.E., Allwood, J., Birat, J.P., Buchert, M., Hagelüken, C., Reck, B.K., Sibley, S.F. & Sonnemann, G. (2011). What do we know about metal recycling rates? Journal of Industrial Ecology. 15(3), 355-366. DOI: 10.1111/j.1530-9290.2011.00342.x. [8] Silva, M.S., Barbosa, C., Acselrad, O. & Pereira, L.C. (2004). Effect of chemical composition variation on microstructure and mechanical properties of AA 6060 aluminum alloy. Journal of Materials Engineering and Performance. 13, 129–134. DOI: 10.1361/10599490418307. [9] Al-Helal, K., Lazaro-Nebreda, Patel, J. & Scamans, G. (2021). High-shear de-gassing and de-ironing of an aluminum. Recycling. 6 (66), 2-10. https://doi.org/10.1111/j.1530-9290.2011.00342.x. [10] Zhang, L., Gao, J., Damoah, L.N.W. & Robertson, D.G. (2012). Removal of iron from aluminum: A review. Mineral Processing and Extractive Metallurgy Review. 33(2), 99-157. DOI: 10.1080/08827508.2010.542211. [11] Zhang, L., Lv, X., Torgerson, A.T. & Long, M. (2011). Removal of impurity elements from molten aluminum: A review. Mineral Processing and Extractive Metallurgy Review. 32(3), 150-228. DOI: 10.1080/08827508. 2010.483396. [12] Paraskevas, D., Kellens, K., Dewulf, W. & Duflou, J.R. (2015). Environmental modelling of aluminium recycling: A Life Cycle Assessment tool for sustainable metal management. Journal of Cleaner Production. 105, 357-370. DOI: 10.1016/j.jclepro.2014.09.102. [13] Eskin, D.G., Savran, V.I. & Katgerman, L. (2005). Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy. Metallurgical and Materials Transactions A. 36, 1965-1976. DOI: 10.1007/s11661-005-0059-6. [14] Nadella, R., Eskin, D.G., Du, Q. & Katgerman, L. (2008). Macrosegregation in direct-chill casting of aluminium alloys. Progress in Materials Science. 53(3), 421-480. DOI: 10.1016/j.pmatsci.2007.10.001. [15] Eskin, D.G. (2014). Mechanisms and Control of Macrosegregation in DC Casting. Light Metals 2014. 855-860. DOI: 10.1002/9781118888438.ch143. [16] Mortensen, D., M’Hamdi, M., Ellingsen, K., Tveito, K., Pedersen, L. & Grasmo, G. (2014). Macrosegregation modelling of DC-casting including grain motion and surface exudation. Light Metals 2014. 867-872. DOI: 10.1002/9781118888438.ch145. [17] Jolly, M., & Katgerman, L. (2022). Modelling of defects in aluminium cast products. Progress in materials science. 123, 1-39. DOI: 10.1016/j.pmatsci.2021.100824 [18] Suyitno, Kool, W.H. & Katgerman, L. (2005). Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 36(6), 1537-1546. DOI: 10.1007/s11661-005-0245-6. [19] Eskin, D.G., Zuidema, J., Savran, V.I. & Katgerman, L. (2004). Structure formation and macrosegregation under different process conditions during DC casting. Materials Science and Engineering A. 384(1-2), 232-244. DOI: 10.1016/j.msea.2004.05.066. [20] Lalpoor, M., Eskin, D. G., Ruvalcaba, D., Fjær, H.G., Ten Cate, A., Ontijt, N. & Katgerman, L. (2011). Cold cracking in DC-cast high strength aluminum alloy ingots: An intrinsic problem intensified by casting process parameters. Materials Science and Engineering A. 528(6), 2831-2842. DOI: 10.1016/j.msea.2010.12.040. [21] Grandfield, J.F., Eskin, D.G, Bainbridge, I.F. (2013). Direct-chill casting of light alloys. United States of America: John Wiley & Sons, Inc., Hoboken, New Jersey. DOI: 10.1002/9781118690734. [22] Wang, R., Zuo, Y., Zhu, Q., Liu, X. & Wang, J. (2022). Effect of temperature field on the porosity and mechanical properties of 2024 aluminum alloy prepared by direct chill casting with melt shearing. Journal of Materials Processing Technology. 307, 117687. DOI: 10.1016/j.jmatprotec. 2022.117687. [23] Barekar, N.S., Skalicky, I., Barbatti, C., Fan, Z. & Jarrett, M. (2021). Enhancement of chip breakability of aluminium alloys by controlling the solidification during direct chill casting. Journal of Alloys and Compounds. 862, 158008. DOI: 10.1016/j.jallcom.2020.158008. [24] ASTM E112. (2010). Standard test methods for determining average grain size E112-10. ASTM E112-10. 96(2004), 1-27. DOI: 10.1520/E0112-10. [25] Jones, S., Rao, A.K.P., Patel, J.B., Scamans, G.M. Fan, Z. (2012). Microstructural evolution in intensively melt sheared direct chill cast Al-alloys. In the 13th International Conference on Aluminum Alloys (ICAA13) 2013, (pp. 91-96). DOI: 10.1007/978-3-319-48761-8_15. [26] Suyitno, A., Eskin, D.G., Savran, V.I. & Katgerman, L. (2004). Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metallurgical and Materials Transactions A. 35 A(11), 3551-3561. DOI: 10.1007/s11661-004-0192-7. [27] Turchin, A.N., Zuijderwijk, M., Pool, J., Eskin, D.G. & Katgerman, L. (2007). Feathery grain growth during solidification under forced flow conditions. Acta Materialia. 55(11), 3795-3801. DOI: 10.1016/j.actamat.2007.02.030. [28] Liu, X., Zhu, Q., Jia, T., Zhao, Z., Cui, J. & Zuo, Y. (2020). As-cast structure and temperature field of direct-chill cast 2024 alloy ingot at different casting speeds. Journal of Materials Engineering and Performance. 29(10), 6840-6848. DOI: 10.1007/s11665-020-05140-x. [29] Tian L., Guo, Y., Li, J., Xia, F., Liang, M. & Bai, Y.(2018) Effects of solidification cooling rate on the microstructure and mechanical properties of a cast Al-Si-Cu-Mg-Ni piston alloy. Materials. 11(7), 3-11. DOI: 10.3390/ma11071230. [30] Suyitno. (2016). Effect of composition on the microporosity, microstructure, and macrostructure in the start-up direct-chill casting billet of Al-Cu alloys. ARPN Journal of Engineering and Applied Sciences. 11(2), 962-967. https://doi.org/10.1007/s11661-004-0192-7. [31] Zhu, C., Zhao, Z. hao, Zhu, Q. feng, Wang, G. song, Zuo, Y. bo, & Qin, G. wu. (2022). Structures and macrosegregation of a 2024 aluminum alloy fabricated by direct chill casting with double cooling field. China Foundry. 19(1), 1-8. DOI: 10.1007/s41230-022-1030-5. [32] Zheng, X., Dong, J. & Wang, S. (2018). Microstructure and mechanical properties of Mg-Nd-Zn-Zr billet prepared by direct chill casting. Journal of Magnesium and Alloys. 6(1), 95-99. DOI: 10.1016/j.jma.2018.01.003. [33] Arif, A.F.M., Akhtar, S.S. & Sheikh, A.K. (2009). Effect of Al-6063 billet quality on the service life of hot extrusion die: metallurgical and statistical investigation. Journal of Failure Analysis and Prevention. 9, 253-261. DOI: 10.1007/s11668-009-9231-4. [34] Triantafyllidis, G.K., Kiligaridis, I., Zagkliveris, D.I., Orfanou, I., Spyridopoulou, S., Mitoudi-Vagourdi, E. & Semertzidou, S. (2015). Characterization of the A6060 Al alloy mainly by using the micro-hardness vickers test in order to optimize the industrial solutionizing conditions of the as-cast billets. Material. Science and Applications. 06(01), 86-94. DOI: 10.4236/msa.2015.61011. [35] Asensio-Lozano J., Suárez-Peña, B. & Voort, G.F.V. (2014). Effect of processing steps on the mechanical properties and surface appearance of 6063 aluminium extruded products. Materials. 7(6), 4224-4242. DOI: 10.3390/ma7064224. [36] Založnik, M. & Šarler, B. (2005). Modeling of macrosegregation in direct-chill casting of aluminum alloys: Estimating the influence of casting parameters. Materials Science and Engineering A. 413-414, 85-91. DOI: 10.1016/j.msea.2005.09.056.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3