The Effect of Work Hardening on the Structure and Hardness of Hadfield Steel

Author:

Bańkowski Damian1ORCID,Młynarczyk Piotr S.1ORCID,Depczyński Wojciech P.1ORCID,Bolanowski Kazimierz1ORCID

Affiliation:

1. Kielce University of Technology, Poland

Abstract

The article aims to characterize Hadfield steel by analyzing its chemical composition, mechanical properties, and microstructure. The study focused on the twinning-induced work hardening of the alloy, which led to an increase in its hardness. The experimental data show that the material hardness at the surface improved considerably after solution heat treatment and work hardening, reaching more than 750 HV. By contrast, the hardness of the material core in the supersaturated condition was about 225 HV. The chemical and phase compositions of the material at the surface were compared with those of the core. The microstructural analysis of the steel revealed characteristic decarburization of the surface layer after solution heat treatment. The article also describes the effects of heat treatment on the properties and microstructure of Hadfield steel. The volumetric (qualitative) analysis of the computed tomography (CT) data of Hadfield steel subjected to heavy dynamic loading helped detect internal flaws, assess the material quality, and potentially prevent the structural failure or damage of the element tested.

Publisher

Polish Academy of Sciences Chancellery

Reference1 articles.

1. [1] Kalandyk, B., Tęcza, G., Zapała, R., Sobula, S. (2015). Cast high-manganese steel – the effect of microstructure on abrasive wear behaviour in miller test. Archives of Foundry Engineering. 15(2), 35-38. DOI: 10.1515/afe-2015-0033. [2] Bartlett, L.N. & Avila, B.R. (2016). Grain refinement in lightweight advanced high-strength steel castings. International Journal of Metalcasting. 10, 401-420, DOI: 10.1007/s40962-016-0048-0. [3] Guzman Fernandes, P.E. & Arruda, Santos, L. (2020). Effect of titanium and nitrogen inoculation on the microstructure, mechanical properties and abrasive wear resistance of Hadfield Steels. REM - International Engineering Journal. 73(5), 77-83. https://doi.org/10.1590/ 0370-44672019730023 [4] Chen, C., Lv, B., Feng, X., Zhang, F. & Beladi, H. (2018). Strain hardening and nanocrystallization behaviors in Hadfield steel subjected to surface severe plastic deformation. Materials Science and Engineering: A. 729, 178-184. DOI:10.1016/j.msea.2018.05.059. [5] Chen, C., Zhang, F.C., Wang, F., Liu, H. & Yu, B.D. (2017). Efect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel. Materials Science & Engineering. 679, 95-103. DOI:10.1016/j.msea.2016.09.106. [6] Bolanowski, K. (2008). Wear of working elements made of Hadfield cast steel under industrial conditions. Problemy Eksploatacji. 2, 25-32. [7] Tęcza, G., Sobula, S. (2014). Effect of heat treatment on change microstructure of cast high-manganese Hadfield steel with elevated chromium content. Archives of Foundry Engineering. 14(3), 67-70. [8] Gürol, U., Karadeniz, E., Çoban, O., & Kurnaz, S.C. (2021). Casting properties of ASTM A128 Gr. E1 steel modified with Mn-alloying and titanium ladle treatment. China Foundry. 18, 199-206. https://doi.org/10.1007/s41230-021-1002-1 [9] Pribulová, A., Babic, J. & Baricová, D. (2011). Influence of Hadfield´s steel chemical composition on its mechanical properties. Chem. Listy. 105, 430-432. [10] Przybyłowicz, K. (2008). Iron alloys engineering. Kielce: Wyd. Politechniki Świętokrzyskiej w Kielcach (in Polish). [11] Stradomski, Z. (2001). On the explosive hardening of cast Hadfield steel. Proceedings of a Conference on Advanced Steel Casting Technologies. Kraków. 112-122. (in Polish). [12] Cullity, B.D. (1964). Basics of X-ray diffraction. Warszawa: PWN. (in Polish). [13] Bolanowski, K. (2013). The influence of the hardness of the surface layer on the abrasion resistance of Hadfield cast steel. Problemy Eksploatacji. 1, 127-139. (in Polish). [14] Przybyłowicz, K. (2012). Metal Science. Warszawa: WNT. (in Polish). [15] El Fawjhry, M.K. (2018). Feasibility of new ladle-treated Hadfield steel for mining purposes. International Journal of Minerals, Metallurgy and Materials. 25(3), 300, https://doi.org/10.1007/s12613-018-1573-z. [16] Subramanyan, D.K, Swansieger, A.E. and Avery, H.S. (1990). Austenitic manganese steels. In ASM Metals Handbook. Vol. 1, 10th Ed. (p. 822-840). India: American Society of Metals, India. [17] Zykova, A., Popova, N., Kalashnikov, M. & Kurzina, I. (2017). Fine structure and phase composition of Fe–14Mn–1.2C steel: influence of a modified mixture based on refractory metals. International Journal of Minerals, Metallurgy and Materials. 24(5), 523-529. DOI: 10.1007/s12613-017-1433-2. [18] Vdovin, K.N., Feoktistov, N.A., Gorlenko, D.A. et al. (2019). Modification of High-Manganese Steel Castings with Titanium Carbonitride. Steel in Translation. 3, 147-151. https://doi.org/10.3103/S0967091219030136. [19] Issagulov, A.Z., Akhmetov, A.B., Naboko, Ye.P., Kusainova, G.D. & Kuszhanova, A.A. (2016). The research of modification process of steel Hadfield integrated alloy ferroalumisilicocalcium (Fe-Al-Si-Сa/FASC). Metalurgija. 55(3), 333-336. [20] Haakonsen, F., Solberg, J.K., Klevan, O. & Van der Eijk, C. (2011). Grain refinement of austenitic manganese steels. In AISTech - Iron and Steel Technology Conference Proceedings, 5-6 May 2011 (pp. 763-771). Indianapolis, USA. [21] El Fawkhry, M.K. (2021). Modified hadfield steel for castings of high and low gouging applications. International Journal of Metalcasting. 15(2), 613-624. https://doi.org/10.1007/s40962-020-00492-5. [22] EI Fawkhry, M.K., Fathy, A.M. and Eissa, M.M. (2015). New energy saving technology for producing Hadfield steel to high gouging applications. Steel Research International. 86(3), 223-230. https://doi.org/10.1002/srin.201300388. [23] El-Fawkhry, M.K., Fathy, A.M., Eissa, M. & El-Faramway, H. (2014). Eliminating heat treatment of Hadfield steel in stress abrasion wear applications. International Journal of Metalcasting. 8, 29-36. DOI: 10.1007/BF03355569 [24] Sobula, S., Kraiński, S. (2021). Effect of SiZr modification on the microstructure and properties of high manganese cast steel. Archives of Foundry Engineering. 4, 82-86. ISSN (1897-3310). [25] Zambrano, O.A., Tressia, G., Souza, R.M. (2020). Failure analysis of a crossing rail made of Hadfield steel after severe plastic deformation induced by wheel-rail interaction. Engineering Failure Analysis. 115, 104621. DOI: doi.org/10.1016/j.engfailanal.2020.104621. [26] Wróbel, T., Bartocha, D., Jezierski, J., Kalandyk, B., Sobula, S., Tęcza, G., Kostrzewa, K., Feliks E. High-manganese alloy cast steel in applications for cast elements of railway infrastructure. In Współpraca 2023 : XXIX international scientific conference of Polish, Czech and Slovak foundrymen, 26-28 April 2023. Niepołomice. [27] Młyński, M., Sobula, S., Furgał, G. (2001). Economic aspects of the oxygen-recovery melts of Hadfield cast steel in the Foundry of Metalodlew S.A. Przegląd Odlewnictwa. 51(11), 382-384. (in Polish). [28] Wróbel, T., Bartocha, D., Jezierski, J., Sobula, S., Kostrzewa K., Feliks E. (2023). High-manganese alloy cast steel used for cast elements of railway infrastructure. Stal, Metale & Nowe Technologie. 1-2, 30-34. (in Polish).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3